中文版 | English
题名

Transferring Virtual Surgical Skills to Reality: AI Agents Mastering Surgical Decision-Making in Vascular Interventional Robotics

作者
通讯作者Zhao, Yang; Guo, Shuxiang
发表日期
2024-07-01
DOI
发表期刊
ISSN
1083-4435
EISSN
1941-014X
摘要
Vascular interventional surgery offers advantages, such as minimal invasiveness, quick recovery, and low side-effects. Performing automatic guidewire navigation on vascular surgical robots can effectively assist doctors in performing surgery. Deep learning and reinforcement learning methods have been widely used for guidewire navigation tasks. However, the challenge remains in making delivery decisions for complex and extended pathways, with real-time images being the only data source. The development of network architecture, coupled with the formulation of an efficacious training regimen for this network is of significant importance and holds substantial meaning for the advancement of autonomous systems in vascular surgical robots. Therefore, this research proposes a virtual training environment that incorporates real vascular projections to create virtual environment. In this environment, the approach is enhanced by incorporating guidewire tip-to-target distance in the reward function, using real-time images as input states. This article also employs a multiprocess proximal policy optimization algorithm to accelerate training process and a multistage training approach to reduce the training difficulty. Results demonstrate the effectiveness in virtual automated guidewire navigation and improves success rates. This research proposes a method, which generates effective inputs for the reinforcement learning agent, and enables the pretrained agent to accomplish delivery tasks in real-world scenarios.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Fujian Science and Technology Project[2022I0003] ; Shenzhen Science and Technology Program[JCYJ20220530143217037] ; National Natural Science Foundation of China[52075464]
WOS研究方向
Automation & Control Systems ; Engineering
WOS类目
Automation & Control Systems ; Engineering, Manufacturing ; Engineering, Electrical & Electronic ; Engineering, Mechanical
WOS记录号
WOS:001273001900001
出版者
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/790012
专题工学院_电子与电气工程系
作者单位
1.Xiamen Univ, Xiamen 361102, Peoples R China
2.Xiamen Univ, Dept Shenzhen Res Inst, Shenzhen 518000, Peoples R China
3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
4.Beijing Inst Technol, Minist Ind & Informat Technol, Key Lab Convergence Med Engn Syst & Healthcare Tec, Beijing, Peoples R China
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Mei, Ziyang,Wei, Jiayi,Pan, Si,et al. Transferring Virtual Surgical Skills to Reality: AI Agents Mastering Surgical Decision-Making in Vascular Interventional Robotics[J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS,2024.
APA
Mei, Ziyang.,Wei, Jiayi.,Pan, Si.,Wang, Haoyun.,Wu, Dezhi.,...&Guo, Shuxiang.(2024).Transferring Virtual Surgical Skills to Reality: AI Agents Mastering Surgical Decision-Making in Vascular Interventional Robotics.IEEE-ASME TRANSACTIONS ON MECHATRONICS.
MLA
Mei, Ziyang,et al."Transferring Virtual Surgical Skills to Reality: AI Agents Mastering Surgical Decision-Making in Vascular Interventional Robotics".IEEE-ASME TRANSACTIONS ON MECHATRONICS (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Mei, Ziyang]的文章
[Wei, Jiayi]的文章
[Pan, Si]的文章
百度学术
百度学术中相似的文章
[Mei, Ziyang]的文章
[Wei, Jiayi]的文章
[Pan, Si]的文章
必应学术
必应学术中相似的文章
[Mei, Ziyang]的文章
[Wei, Jiayi]的文章
[Pan, Si]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。