中文版 | English
题名

A nonlinear high-order transformations-based method for high-order tensor completion

作者
通讯作者Lu, Jian
发表日期
2024-12-01
DOI
发表期刊
ISSN
0165-1684
EISSN
1872-7557
卷号225
摘要
The high-order tensor nuclear norm model (HTNN) has recently shown promising results in tensor completion problems. The HTNN-based approaches rely on the low-rank structure of tensor slices during reversible transformations. However, under reversible transformations, the low-rank configuration within the slice- wise modality of the tensor's structure is not markedly pronounced. In order to more effectively describe the low-rank characteristics, we propose a model based on the nonlinear high-order transform-based tensor nuclear norm (NHTNN). Specifically, our framework consists of a linearly semi-orthogonal transformation along the high-dimensional modality and an element-wise nonlinear transformation. We introduce a model for tensor completion, grounded in the suggested measure of tensor low-rank, i.e., NHTNN. Utilizing this non-convex nonlinear model, we formulate a proximal alternating minimization (PAM) algorithm, establishing its convergence through a rigorous proof. In experiments on datasets such as hyperspectral videos (HSVs) and color videos (CVs), our approach demonstrates superior quantitative numerical results and qualitative visual effects compared to cutting-edge tensor completion techniques.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China["U21A20455","12326619","61972265","62372302","11871348","12201286"] ; Natural Science Foundation of Guangdong Province of China["2020B1515310008","2023A1515011691","2024A1515011913"] ; Educational Commission of Guangdong Province of China[2019KZDZX1007] ; Shenzhen Science and Technology Program, China[20231115165836001] ; HKRGC, China[CityU11301120] ; National Key R&D Program of China[2023YFA1011400] ; Shenzhen Fundamental Research Program, China[JCYJ20220818100602005]
WOS研究方向
Engineering
WOS类目
Engineering, Electrical & Electronic
WOS记录号
WOS:001274618800001
出版者
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/790019
专题理学院_统计与数据科学系
作者单位
1.Shenzhen Univ, Sch Math Sci, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Peoples R China
2.Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen 518055, Peoples R China
3.Pazhou Lab, Guangzhou 510320, Peoples R China
4.Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518005, Peoples R China
推荐引用方式
GB/T 7714
Luo, Linhong,Tu, Zhihui,Lu, Jian,et al. A nonlinear high-order transformations-based method for high-order tensor completion[J]. SIGNAL PROCESSING,2024,225.
APA
Luo, Linhong,Tu, Zhihui,Lu, Jian,Wang, Chao,&Xu, Chen.(2024).A nonlinear high-order transformations-based method for high-order tensor completion.SIGNAL PROCESSING,225.
MLA
Luo, Linhong,et al."A nonlinear high-order transformations-based method for high-order tensor completion".SIGNAL PROCESSING 225(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Luo, Linhong]的文章
[Tu, Zhihui]的文章
[Lu, Jian]的文章
百度学术
百度学术中相似的文章
[Luo, Linhong]的文章
[Tu, Zhihui]的文章
[Lu, Jian]的文章
必应学术
必应学术中相似的文章
[Luo, Linhong]的文章
[Tu, Zhihui]的文章
[Lu, Jian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。