中文版 | English
题名

Simultaneous mutations in ITPK4 and MRP5 genes result in a low phytic acid level without compromising salt tolerance in Arabidopsis

作者
通讯作者Zhao, Chunzhao
发表日期
2024-07-01
DOI
发表期刊
ISSN
1672-9072
EISSN
1744-7909
摘要

Generation of crops with low phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP(6))) is an important breeding direction, but such plants often display less desirable agronomic traits. In this study, through ethyl methanesulfonate-mediated mutagenesis, we found that inositol 1,3,4-trisphosphate 5/6-kinase 4 (ITPK4), which is essential for producing InsP(6), is a critical regulator of salt tolerance in Arabidopsis. Loss of function of ITPK4 gene leads to reduced root elongation under salt stress, which is primarily because of decreased root meristem length and reduced meristematic cell number. The itpk4 mutation also results in increased root hair density and increased accumulation of reactive oxygen species during salt exposure. RNA sequencing assay reveals that several auxin-responsive genes are down-regulated in the itpk4-1 mutant compared to the wild-type. Consistently, the itpk4-1 mutant exhibits a reduced auxin level in the root tip and displays compromised gravity response, indicating that ITPK4 is involved in the regulation of the auxin signaling pathway. Through suppressor screening, it was found that mutation of Multidrug Resistance Protein 5 (MRP5)5 gene, which encodes an ATP-binding cassette (ABC) transporter required for transporting InsP(6) from the cytoplasm into the vacuole, fully rescues the salt hypersensitivity of the itpk4-1 mutant, but in the itpk4-1 mrp5 double mutant, InsP(6) remains at a very low level. These results imply that InsP(6) homeostasis rather than its overall amount is beneficial for stress tolerance in plants. Collectively, this study uncovers a pair of gene mutations that confer low InsP(6) content without impacting stress tolerance, which offers a new strategy for creating "low-phytate" crops.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
Science and Technology Commission of Shanghai Municipality[22ZR1469600] ; National Natural Science Foundation of China[
WOS研究方向
Biochemistry & Molecular Biology ; Plant Sciences
WOS类目
Biochemistry & Molecular Biology ; Plant Sciences
WOS记录号
WOS:001272834400001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/790041
专题南方科技大学医学院_前沿生物技术研究院
生命科学学院
作者单位
1.Chinese Acad Sci, Shanghai Ctr Plant Stress Biol, CAS Ctr Excellence Mol Plant Sci, Key Lab Plant Design,Natl Key Lab Plant Mol Genet, Shanghai 200032, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
3.China Agr Univ, Coll Biol Sci, State Key Lab Plant Environm Resilience, Beijing 100193, Peoples R China
4.Southern Univ Sci & Technol, Inst Adv Biotechnol, Shenzhen 518055, Peoples R China
5.Southern Univ Sci & Technol, Sch Life Sci, Shenzhen 518055, Peoples R China
6.Chinese Acad Agr Sci, Nanfan Res Inst, Key Lab Gene Editing Technol, Minist Agr & Rural Affairs, Sanya 572024, Peoples R China
推荐引用方式
GB/T 7714
Ren, Yuying,Jiang, Mengdan,Zhu, Jian-Kang,et al. Simultaneous mutations in ITPK4 and MRP5 genes result in a low phytic acid level without compromising salt tolerance in Arabidopsis[J]. JOURNAL OF INTEGRATIVE PLANT BIOLOGY,2024.
APA
Ren, Yuying,Jiang, Mengdan,Zhu, Jian-Kang,Zhou, Wenkun,&Zhao, Chunzhao.(2024).Simultaneous mutations in ITPK4 and MRP5 genes result in a low phytic acid level without compromising salt tolerance in Arabidopsis.JOURNAL OF INTEGRATIVE PLANT BIOLOGY.
MLA
Ren, Yuying,et al."Simultaneous mutations in ITPK4 and MRP5 genes result in a low phytic acid level without compromising salt tolerance in Arabidopsis".JOURNAL OF INTEGRATIVE PLANT BIOLOGY (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ren, Yuying]的文章
[Jiang, Mengdan]的文章
[Zhu, Jian-Kang]的文章
百度学术
百度学术中相似的文章
[Ren, Yuying]的文章
[Jiang, Mengdan]的文章
[Zhu, Jian-Kang]的文章
必应学术
必应学术中相似的文章
[Ren, Yuying]的文章
[Jiang, Mengdan]的文章
[Zhu, Jian-Kang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。