中文版 | English
题名

Bayesian inversion of HFC-134a emissions in southern China from a new AGAGE site: Results from an observing system simulation experiment

作者
通讯作者Zhu, Lei
发表日期
2024-10-01
DOI
发表期刊
ISSN
1352-2310
EISSN
1873-2844
卷号334
摘要
The abundance of hydrofluorocarbons (HFCs) in the atmosphere is increasing and is of significant importance to the Earth's system. It is thus crucial to investigate the spatial distribution of HFC emissions. However, inversion modeling, a commonly used approach, is susceptible to errors from a-priori emissions, inversion grids, observations, and other parameters. In this study, we conduct Observing System Simulation Experiment (OSSE) to evaluate the impact of inversion parameters on HFC emission estimates, focusing on HFC-134a at the newly established Xichong (XCG) AGAGE site in Shenzhen, China. We regard the EDGAR (v7) dataset as a reference for "true" emissions and simulate the "true" atmosphere using the GEOS-Chem model. Our OSSE indicates that conducting inversions in the medium- sensitivity region with source-receptor sensitivity larger than 6.0 (nmol mol-1)/(mol-1 )/(mol m- 2 s- 1 ) minimizes the bias between a-posteriori and "true" total emissions to 0.58 %-1.88 %. In the high-sensitivity region, enhancing the spatial resolution of inversion grids lowers this error from-27.07 % to +0.36 %. The accuracy of apriori spatial distribution crucially influences that of the a-posteriori: the higher correlation coefficient between a-priori and "true" emissions, the better a-posteriori agree with the "true" emissions, as evidenced by a reduced root mean square error (RMSE) of the a-posteriori vs. "true" emissions from 1.44 x 10-9-9 g m- 2 s- 1 (GDP- based) to 8.78 x 10-10 g m- 2 s-1 (VIIRS-based). Furthermore, selecting regularization parameters and balancing instrumental and a-priori errors are also important. Our OSSE setups allow for parameter testing during the inversion, offering a framework to assess the regional representativeness of future HFC measurement sites.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Ministry of Science and Technology of the People's Republic of China[2023YFE0112900] ; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks[ZDSYS20220606100604008] ; Guangdong Basic and Applied Basic Research Foundation[2021A1515110713] ; Guangdong University Research Project Science Team[2021KCXTD004] ; Major Talent Project of Guangdong Province[2021QN020924] ; Shenzhen Science and Technology Program["KQTD2021081109004802","JCYJ20210324104604012","JCYJ20220530115404009"] ; High level of special funds[G030290001]
WOS研究方向
Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS类目
Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS记录号
WOS:001282494000001
出版者
EI入藏号
20243116777971
EI主题词
Earth atmosphere ; Mean square error ; Spatial distribution
EI分类号
Surveying:405.3 ; Atmospheric Properties:443.1 ; Engineering Graphics:902.1 ; Mathematics:921 ; Mathematical Statistics:922.2
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/790083
专题工学院_环境科学与工程学院
作者单位
1.Harbin Inst Technol, Sch Environm, Harbin, Peoples R China
2.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen, Guangdong, Peoples R China
3.MIT, Ctr Global Change Sci, Cambridge, MA 02139 USA
4.Guangdong Prov Observat & Res Stn Coastal Atmosphe, Shenzhen, Guangdong, Peoples R China
5.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen Key Lab Precis Measurement & Early Warnin, Shenzhen, Guangdong, Peoples R China
6.Fudan Univ, Inst Atmospher Sci, Dept Atmospher & Ocean Sci, Shanghai, Peoples R China
7.Beijing Jiaotong Univ, Engn Res Ctr Clean & Low Carbon Technol Intelligen, Sch Environm, Minist Educ, Beijing, Peoples R China
8.Fujian Normal Univ, Sch Geog Sci, Fuzhou, Fujian, Peoples R China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Li, Juan,Sheng, Jianxiong,Zhu, Lei,et al. Bayesian inversion of HFC-134a emissions in southern China from a new AGAGE site: Results from an observing system simulation experiment[J]. ATMOSPHERIC ENVIRONMENT,2024,334.
APA
Li, Juan.,Sheng, Jianxiong.,Zhu, Lei.,Yao, Bo.,Wu, Jing.,...&Fu, Tzung-May.(2024).Bayesian inversion of HFC-134a emissions in southern China from a new AGAGE site: Results from an observing system simulation experiment.ATMOSPHERIC ENVIRONMENT,334.
MLA
Li, Juan,et al."Bayesian inversion of HFC-134a emissions in southern China from a new AGAGE site: Results from an observing system simulation experiment".ATMOSPHERIC ENVIRONMENT 334(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Juan]的文章
[Sheng, Jianxiong]的文章
[Zhu, Lei]的文章
百度学术
百度学术中相似的文章
[Li, Juan]的文章
[Sheng, Jianxiong]的文章
[Zhu, Lei]的文章
必应学术
必应学术中相似的文章
[Li, Juan]的文章
[Sheng, Jianxiong]的文章
[Zhu, Lei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。