中文版 | English
题名

CT-based deep learning radiomics biomarker for programmed cell death ligand 1 expression in non-small cell lung cancer

作者
通讯作者Gong, Jingshan
发表日期
2024-07-31
DOI
发表期刊
ISSN
1471-2342
卷号24期号:1
摘要
BackgroundProgrammed cell death ligand 1 (PD-L1), as a reliable predictive biomarker, plays an important role in guiding immunotherapy of lung cancer. To investigate the value of CT-based deep learning radiomics signature to predict PD-L1 expression in non-small cell lung cancers(NSCLCs).Methods259 consecutive patients with pathological confirmed NSCLCs were retrospectively collected and divided into the training cohort and validation cohort according to the chronological order. The univariate and multivariate analyses were used to build the clinical model. Radiomics and deep learning features were extracted from preoperative non-contrast CT images. After feature selection, Radiomics score (Rad-score) and deep learning radiomics score (DLR-score) were calculated through a linear combination of the selected features and their coefficients. Predictive performance for PD-L1 expression was evaluated via the area under the curve (AUC) of receiver operating characteristic, the calibration curves, and the decision curve analysis.ResultsThe clinical model based on Cytokeratin 19 fragment and lobulated shape obtained an AUC of 0.767(95% CI: 0.673-0.860) in the training cohort and 0.604 (95% CI:0.477-0.731) in the validation cohort. 11 radiomics features and 15 deep learning features were selected by LASSO regression. AUCs of the Rad-score were 0.849 (95%CI: 0.783-0.914) and 0.717 (95%CI: 0.607-0.826) in the training cohort and validation cohort, respectively. AUCs of DLR-score were 0.938 (95%CI: 0.899-0.977) and 0.818(95%CI:0.727-0.910) in the training cohort and validation cohort, respectively. AUCs of the DLR-score were significantly higher than those of the Rad-score and the clinical model.ConclusionThe CT-based deep learning radiomics signature could achieve clinically acceptable predictive performance for PD-L1 expression, which showed potential to be a surrogate imaging biomarker or a complement of immunohistochemistry assessment.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
WOS研究方向
Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:001282247700003
出版者
ESI学科分类
CLINICAL MEDICINE
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/790089
专题南方科技大学第一附属医院
作者单位
1.Jinan Univ, Clin Med Coll 2, Shenzhen 518020, Peoples R China
2.Southern Univ Sci & Technol, Jinan Univ, Affiliated Hosp 1, Dept Radiol,Shenzhen Peoples Hosp,Clin Med Coll 2, 1F,Bldg 4,1017 Dongmen North Rd, Shenzhen 518020, Peoples R China
通讯作者单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Xu, Ting,Liu, Xiaowen,Chen, Yaxi,et al. CT-based deep learning radiomics biomarker for programmed cell death ligand 1 expression in non-small cell lung cancer[J]. BMC MEDICAL IMAGING,2024,24(1).
APA
Xu, Ting,Liu, Xiaowen,Chen, Yaxi,Wang, Shuxing,Jiang, Changsi,&Gong, Jingshan.(2024).CT-based deep learning radiomics biomarker for programmed cell death ligand 1 expression in non-small cell lung cancer.BMC MEDICAL IMAGING,24(1).
MLA
Xu, Ting,et al."CT-based deep learning radiomics biomarker for programmed cell death ligand 1 expression in non-small cell lung cancer".BMC MEDICAL IMAGING 24.1(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu, Ting]的文章
[Liu, Xiaowen]的文章
[Chen, Yaxi]的文章
百度学术
百度学术中相似的文章
[Xu, Ting]的文章
[Liu, Xiaowen]的文章
[Chen, Yaxi]的文章
必应学术
必应学术中相似的文章
[Xu, Ting]的文章
[Liu, Xiaowen]的文章
[Chen, Yaxi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。