中文版 | English
题名

Frequency-Bessel Transform Method for Multimodal Dispersion Measurement of Surface Waves From Distributed Acoustic Sensing Data

作者
通讯作者Chen, Xiaofei
发表日期
2024-08-01
DOI
发表期刊
ISSN
2169-9313
EISSN
2169-9356
卷号129期号:8
摘要
The array-based frequency-Bessel transform method has been demonstrated to effectively extract dispersion curves of higher-mode surface waves from the empirical Green's functions (EGFs) of displacement fields reconstructed by ambient noise interferometry. Distributed acoustic sensing (DAS), a novel dense array observation technique, has been widely implemented in surface wave imaging to estimate subsurface velocity structure in practice. However, there is still no clear understanding in theory about how to accurately extract surface-wave dispersion curves directly from DAS strain (or strain rate) data. To address this, we extend the frequency-Bessel transform method by deriving Green's functions (GFs) for horizontal strain fields, making it applicable to DAS data. First, we test its performance using synthetic GFs and verify the correctness of extracted dispersion spectrograms with theoretical results. Then, we apply it to three field DAS ambient-noise data sets, two recorded on land and one in the seabed. The reliability and advantages of the method are confirmed by comparing results with the widely used phase shift method. The results demonstrate that our extended frequency-Bessel transform method is reliable and can provide more abundant and higher-quality dispersion information of surface waves. Moreover, our method is also adaptable for active-source DAS data with simple modifications to the derived transform formulas. We also find that the gauge length in the DAS system significantly impacts the polarity and value of extracted dispersion energy. Overall, our study provides a theoretical framework and practical tool for multimodal surface wave dispersion measurement using DAS data.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China["42304065","92155307"] ; Shenzhen Science and Technology Program[KQTD20170810111725321] ; Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology[2022B1212010002] ; Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technology[ZDSYS20190902093007855] ; China Postdoctoral Science Foundation[2022M721460]
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:001281108600001
出版者
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/790097
专题理学院_地球与空间科学系
南方科技大学
作者单位
1.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Peoples R China
2.Southern Univ Sci & Technol, Guangdong Prov Key Lab Geophys High Resolut Imagin, Shenzhen, Peoples R China
3.Southern Univ Sci & Technol, Shenzhen Key Lab Deep Offshore Oil & Gas Explorat, Shenzhen, Peoples R China
第一作者单位地球与空间科学系;  南方科技大学
通讯作者单位地球与空间科学系;  南方科技大学
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Yuan, Shichuan,Chen, Xiaofei,Liu, Qi,et al. Frequency-Bessel Transform Method for Multimodal Dispersion Measurement of Surface Waves From Distributed Acoustic Sensing Data[J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH,2024,129(8).
APA
Yuan, Shichuan.,Chen, Xiaofei.,Liu, Qi.,Ren, Hengxin.,Wang, Jiannan.,...&Yan, Yingwei.(2024).Frequency-Bessel Transform Method for Multimodal Dispersion Measurement of Surface Waves From Distributed Acoustic Sensing Data.JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH,129(8).
MLA
Yuan, Shichuan,et al."Frequency-Bessel Transform Method for Multimodal Dispersion Measurement of Surface Waves From Distributed Acoustic Sensing Data".JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH 129.8(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yuan, Shichuan]的文章
[Chen, Xiaofei]的文章
[Liu, Qi]的文章
百度学术
百度学术中相似的文章
[Yuan, Shichuan]的文章
[Chen, Xiaofei]的文章
[Liu, Qi]的文章
必应学术
必应学术中相似的文章
[Yuan, Shichuan]的文章
[Chen, Xiaofei]的文章
[Liu, Qi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。