中文版 | English
题名

STAGE: a spatiotemporal-knowledge enhanced multi-task generative adversarial network (GAN) for trajectory generation

作者
通讯作者Liu, Kang
发表日期
2024-07-01
DOI
发表期刊
ISSN
1365-8816
EISSN
1362-3087
摘要
Individual trajectory data play a pivotal role in various application fields, such as urban planning, traffic control, and epidemic simulation. Despite the diverse means for data collection in current times, the real-world trajectory data in practical application remains severely limited due to concerns over personal privacy. In this study, we designed a Spatiotemporal-knowledge enhanced multi-TAsk GEnerative adversarial network (GAN), named STAGE, to generate synthetic trajectories that statistically resemble the real data without recycling personal information. In STAGE, we designed a multi-task generator with three stages of spatio-temporal generation tasks, i.e. activity-sequence generation task, township-level trajectory generation task, and neighborhood-level trajectory generation task, with the last one as the main task while the other two as auxiliary tasks. Meanwhile, we designed a spatial consistency loss in the adversarial training process to assess the spatial consistency of generated trajectories at different spatial scales. Experiment results show that compared to the baselines, trajectories generated by our method have closer data distributions to the real ones. We argued that the designs of spatiotemporal-knowledge enhanced generation tasks and training loss benefit the spatiotemporal generation processes, which help reproduce the temporal patterns of human daily activities and spatial distribution of human movements.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一
WOS研究方向
Computer Science ; Geography ; Physical Geography ; Information Science & Library Science
WOS类目
Computer Science, Information Systems ; Geography ; Geography, Physical ; Information Science & Library Science
WOS记录号
WOS:001279427600001
出版者
ESI学科分类
SOCIAL SCIENCES, GENERAL
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/790116
专题南方科技大学
作者单位
1.Southern Univ Sci & Technol, Shenzhen, Peoples R China
2.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen, Peoples R China
5.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing, Peoples R China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Cao, Zhongcai,Liu, Kang,Jin, Xin,et al. STAGE: a spatiotemporal-knowledge enhanced multi-task generative adversarial network (GAN) for trajectory generation[J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,2024.
APA
Cao, Zhongcai,Liu, Kang,Jin, Xin,Ning, Li,Yin, Ling,&Lu, Feng.(2024).STAGE: a spatiotemporal-knowledge enhanced multi-task generative adversarial network (GAN) for trajectory generation.INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE.
MLA
Cao, Zhongcai,et al."STAGE: a spatiotemporal-knowledge enhanced multi-task generative adversarial network (GAN) for trajectory generation".INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cao, Zhongcai]的文章
[Liu, Kang]的文章
[Jin, Xin]的文章
百度学术
百度学术中相似的文章
[Cao, Zhongcai]的文章
[Liu, Kang]的文章
[Jin, Xin]的文章
必应学术
必应学术中相似的文章
[Cao, Zhongcai]的文章
[Liu, Kang]的文章
[Jin, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。