题名 | STAGE: a spatiotemporal-knowledge enhanced multi-task generative adversarial network (GAN) for trajectory generation |
作者 | |
通讯作者 | Liu, Kang |
发表日期 | 2024-07-01
|
DOI | |
发表期刊 | |
ISSN | 1365-8816
|
EISSN | 1362-3087
|
摘要 | Individual trajectory data play a pivotal role in various application fields, such as urban planning, traffic control, and epidemic simulation. Despite the diverse means for data collection in current times, the real-world trajectory data in practical application remains severely limited due to concerns over personal privacy. In this study, we designed a Spatiotemporal-knowledge enhanced multi-TAsk GEnerative adversarial network (GAN), named STAGE, to generate synthetic trajectories that statistically resemble the real data without recycling personal information. In STAGE, we designed a multi-task generator with three stages of spatio-temporal generation tasks, i.e. activity-sequence generation task, township-level trajectory generation task, and neighborhood-level trajectory generation task, with the last one as the main task while the other two as auxiliary tasks. Meanwhile, we designed a spatial consistency loss in the adversarial training process to assess the spatial consistency of generated trajectories at different spatial scales. Experiment results show that compared to the baselines, trajectories generated by our method have closer data distributions to the real ones. We argued that the designs of spatiotemporal-knowledge enhanced generation tasks and training loss benefit the spatiotemporal generation processes, which help reproduce the temporal patterns of human daily activities and spatial distribution of human movements. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
WOS研究方向 | Computer Science
; Geography
; Physical Geography
; Information Science & Library Science
|
WOS类目 | Computer Science, Information Systems
; Geography
; Geography, Physical
; Information Science & Library Science
|
WOS记录号 | WOS:001279427600001
|
出版者 | |
ESI学科分类 | SOCIAL SCIENCES, GENERAL
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/790116 |
专题 | 南方科技大学 |
作者单位 | 1.Southern Univ Sci & Technol, Shenzhen, Peoples R China 2.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China 3.Univ Chinese Acad Sci, Beijing, Peoples R China 4.Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen, Peoples R China 5.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing, Peoples R China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Cao, Zhongcai,Liu, Kang,Jin, Xin,et al. STAGE: a spatiotemporal-knowledge enhanced multi-task generative adversarial network (GAN) for trajectory generation[J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,2024.
|
APA |
Cao, Zhongcai,Liu, Kang,Jin, Xin,Ning, Li,Yin, Ling,&Lu, Feng.(2024).STAGE: a spatiotemporal-knowledge enhanced multi-task generative adversarial network (GAN) for trajectory generation.INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE.
|
MLA |
Cao, Zhongcai,et al."STAGE: a spatiotemporal-knowledge enhanced multi-task generative adversarial network (GAN) for trajectory generation".INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE (2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论