中文版 | English
题名

Dual-scale shifted window attention network for medical image segmentation

作者
发表日期
2024-12-01
DOI
发表期刊
EISSN
2045-2322
卷号14期号:1
摘要
Swin Transformer is an important work among all the attempts to reduce the computational complexity of Transformers while maintaining its excellent performance in computer vision. Window-based patch self-attention can use the local connectivity of the image features, and the shifted window-based patch self-attention enables the communication of information between different patches in the entire image scope. Through in-depth research on the effects of different sizes of shifted windows on the patch information communication efficiency, this article proposes a Dual-Scale Transformer with double-sized shifted window attention method. The proposed method surpasses CNN-based methods such as U-Net, AttenU-Net, ResU-Net, CE-Net by a considerable margin (Approximately 3% ∼ 6% increase), and outperforms the Transformer based models single-scale Swin Transformer(SwinT)(Approximately 1% increase), on the datasets of the Kvasir-SEG, ISIC2017, MICCAI EndoVisSub-Instrument and CadVesSet. The experimental results verify that the proposed dual scale shifted window attention benefits the communication of patch information and can enhance the segmentation results to state of the art. We also implement an ablation study on the effect of the shifted window size on the information flow efficiency and verify that the dual-scale shifted window attention is the optimized network design. Our study highlights the significant impact of network structure design on visual performance, providing valuable insights for the design of networks based on Transformer architectures.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一
Scopus记录号
2-s2.0-85200231639
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794348
专题工学院_系统设计与智能制造学院
作者单位
1.School of System Design and Intelligent Manufacturing,Southern University of Science and Technology,Shenzhen,1088 Xueyuan Boulevard, Nanshan District,518055,China
2.The Future Laboratory,Tsinghua University,Beijing,160 Chengfu Road, Haidian District,100084,China
第一作者单位系统设计与智能制造学院
第一作者的第一单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Han,De Wei,Yin,Xiao Lei,Xu,Jian,et al. Dual-scale shifted window attention network for medical image segmentation[J]. Scientific Reports,2024,14(1).
APA
Han,De Wei.,Yin,Xiao Lei.,Xu,Jian.,Li,Kang.,Li,Jun Jie.,...&Ma,Zhao Yuan.(2024).Dual-scale shifted window attention network for medical image segmentation.Scientific Reports,14(1).
MLA
Han,De Wei,et al."Dual-scale shifted window attention network for medical image segmentation".Scientific Reports 14.1(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Han,De Wei]的文章
[Yin,Xiao Lei]的文章
[Xu,Jian]的文章
百度学术
百度学术中相似的文章
[Han,De Wei]的文章
[Yin,Xiao Lei]的文章
[Xu,Jian]的文章
必应学术
必应学术中相似的文章
[Han,De Wei]的文章
[Yin,Xiao Lei]的文章
[Xu,Jian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。