中文版 | English
题名

Locally divergence-free well-balanced path-conservative central-upwind schemes for rotating shallow water MHD

作者
通讯作者Kurganov,Alexander
发表日期
2024-12-01
DOI
发表期刊
ISSN
0021-9991
EISSN
1090-2716
卷号518
摘要
We develop a new second-order flux globalization based path-conservative central-upwind (PCCU) scheme for rotating shallow water magnetohydrodynamic equations. The new scheme is designed not only to maintain the divergence-free constraint of the magnetic field at the discrete level but also to satisfy the well-balanced (WB) property by exactly preserving some physically relevant steady states of the underlying system. The locally divergence-free constraint of the magnetic field is enforced by following the method recently introduced in Chertock et al. (2024) [19]: we consider a Godunov-Powell modified version of the studied system, introduce additional equations by spatially differentiating the magnetic field equations, and modify the reconstruction procedures for magnetic field variables. The WB property is ensured by implementing a flux globalization approach within the PCCU scheme, leading to a method capable of preserving both still- and moving-water equilibria exactly. In addition to provably achieving both the WB and divergence-free properties, the new method is implemented on an unstaggered grid and does not require any (approximate) Riemann problem solvers. The performance of the proposed method is demonstrated in several numerical experiments that confirms robustness, a high resolution of obtained results, and a lack of spurious oscillations.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85200145896
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794350
专题理学院_数学系
南方科技大学
作者单位
1.Department of Mathematics and Center for Research in Scientific Computing,North Carolina State University,Raleigh,27695,United States
2.Department of Mathematics,Shenzhen International Center for Mathematics,Guangdong Provincial Key Laboratory of Computational Science and Material Design,Southern University of Science and Technology,Shenzhen,518055,China
3.Applied and Computational Mathematics,RWTH Aachen University,Aachen,52062,Germany
4.Department of Mathematics,North Carolina State University,Raleigh,27695,United States
5.Laboratoire de Météorologie Dynamique,Sorbonne Université (SU),Ecole Normale Supérieure (ENS),CNRS,Paris,75231,France
6.Shenzhen International Center for Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
通讯作者单位数学系
推荐引用方式
GB/T 7714
Chertock,Alina,Kurganov,Alexander,Redle,Michael,et al. Locally divergence-free well-balanced path-conservative central-upwind schemes for rotating shallow water MHD[J]. Journal of Computational Physics,2024,518.
APA
Chertock,Alina,Kurganov,Alexander,Redle,Michael,&Zeitlin,Vladimir.(2024).Locally divergence-free well-balanced path-conservative central-upwind schemes for rotating shallow water MHD.Journal of Computational Physics,518.
MLA
Chertock,Alina,et al."Locally divergence-free well-balanced path-conservative central-upwind schemes for rotating shallow water MHD".Journal of Computational Physics 518(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chertock,Alina]的文章
[Kurganov,Alexander]的文章
[Redle,Michael]的文章
百度学术
百度学术中相似的文章
[Chertock,Alina]的文章
[Kurganov,Alexander]的文章
[Redle,Michael]的文章
必应学术
必应学术中相似的文章
[Chertock,Alina]的文章
[Kurganov,Alexander]的文章
[Redle,Michael]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。