题名 | Invisible gas detection: An RGB-thermal cross attention network and a new benchmark |
作者 | |
通讯作者 | Peng,Xiaojiang |
发表日期 | 2024-11-01
|
DOI | |
发表期刊 | |
ISSN | 1077-3142
|
EISSN | 1090-235X
|
卷号 | 248 |
摘要 | The widespread use of various chemical gases in industrial processes necessitates effective measures to prevent their leakage during transportation and storage, given their high toxicity. Thermal infrared-based computer vision detection techniques provide a straightforward approach to identify gas leakage areas. However, the development of high-quality algorithms has been challenging due to the low texture in thermal images and the lack of open-source datasets. In this paper, we present the RGB-Thermal Cross Attention Network (RT-CAN), which employs an RGB-assisted two-stream network architecture to integrate texture information from RGB images and gas area information from thermal images. Additionally, to facilitate the research of invisible gas detection, we introduce Gas-DB, an extensive open-source gas detection database including about 1.3K well-annotated RGB-thermal images with eight variant collection scenes. Experimental results demonstrate that our method successfully leverages the advantages of both modalities, achieving state-of-the-art (SOTA) performance among RGB-thermal methods, surpassing single-stream SOTA models in terms of accuracy, Intersection of Union (IoU), and F2 metrics by 4.86%, 5.65%, and 4.88%, respectively. The code and data can be found at https://github.com/logic112358/RT-CAN. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
ESI学科分类 | COMPUTER SCIENCE
|
Scopus记录号 | 2-s2.0-85200597200
|
来源库 | Scopus
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/794367 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology,Shenzhen,518055,China 2.College of Big Data and Internet,Shenzhen Technology University,Shenzhen,518118,China 3.Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen,518055,China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Wang,Jue,Lin,Yuxiang,Zhao,Qi,et al. Invisible gas detection: An RGB-thermal cross attention network and a new benchmark[J]. Computer Vision and Image Understanding,2024,248.
|
APA |
Wang,Jue.,Lin,Yuxiang.,Zhao,Qi.,Luo,Dong.,Chen,Shuaibao.,...&Peng,Xiaojiang.(2024).Invisible gas detection: An RGB-thermal cross attention network and a new benchmark.Computer Vision and Image Understanding,248.
|
MLA |
Wang,Jue,et al."Invisible gas detection: An RGB-thermal cross attention network and a new benchmark".Computer Vision and Image Understanding 248(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论