中文版 | English
题名

Invisible gas detection: An RGB-thermal cross attention network and a new benchmark

作者
通讯作者Peng,Xiaojiang
发表日期
2024-11-01
DOI
发表期刊
ISSN
1077-3142
EISSN
1090-235X
卷号248
摘要
The widespread use of various chemical gases in industrial processes necessitates effective measures to prevent their leakage during transportation and storage, given their high toxicity. Thermal infrared-based computer vision detection techniques provide a straightforward approach to identify gas leakage areas. However, the development of high-quality algorithms has been challenging due to the low texture in thermal images and the lack of open-source datasets. In this paper, we present the RGB-Thermal Cross Attention Network (RT-CAN), which employs an RGB-assisted two-stream network architecture to integrate texture information from RGB images and gas area information from thermal images. Additionally, to facilitate the research of invisible gas detection, we introduce Gas-DB, an extensive open-source gas detection database including about 1.3K well-annotated RGB-thermal images with eight variant collection scenes. Experimental results demonstrate that our method successfully leverages the advantages of both modalities, achieving state-of-the-art (SOTA) performance among RGB-thermal methods, surpassing single-stream SOTA models in terms of accuracy, Intersection of Union (IoU), and F2 metrics by 4.86%, 5.65%, and 4.88%, respectively. The code and data can be found at https://github.com/logic112358/RT-CAN.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85200597200
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794367
专题南方科技大学
作者单位
1.Southern University of Science and Technology,Shenzhen,518055,China
2.College of Big Data and Internet,Shenzhen Technology University,Shenzhen,518118,China
3.Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen,518055,China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Wang,Jue,Lin,Yuxiang,Zhao,Qi,et al. Invisible gas detection: An RGB-thermal cross attention network and a new benchmark[J]. Computer Vision and Image Understanding,2024,248.
APA
Wang,Jue.,Lin,Yuxiang.,Zhao,Qi.,Luo,Dong.,Chen,Shuaibao.,...&Peng,Xiaojiang.(2024).Invisible gas detection: An RGB-thermal cross attention network and a new benchmark.Computer Vision and Image Understanding,248.
MLA
Wang,Jue,et al."Invisible gas detection: An RGB-thermal cross attention network and a new benchmark".Computer Vision and Image Understanding 248(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Jue]的文章
[Lin,Yuxiang]的文章
[Zhao,Qi]的文章
百度学术
百度学术中相似的文章
[Wang,Jue]的文章
[Lin,Yuxiang]的文章
[Zhao,Qi]的文章
必应学术
必应学术中相似的文章
[Wang,Jue]的文章
[Lin,Yuxiang]的文章
[Zhao,Qi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。