中文版 | English
题名

Collaborative neural networks-accelerated prediction of transition state energy barriers for CO catalytic oxidation

作者
通讯作者Chen,Yanrong
发表日期
2024-10-15
DOI
发表期刊
ISSN
0925-8388
卷号1002
摘要
We present a machine learning (ML) framework to explore the predictability of energy barriers of transition state (activation energy) for CO catalytic oxidation from non-collected ∼300 single-point energy data. Radial basis function (RBF) and back propagation (BP) neural networks for sensitivity analysis and small sample prediction training are used to fuse descriptor data to predict transition state energy barriers. Although the trained ML model may underfit, it is capable of predicting energy barriers of transition state with NH adsorption energy (E NH*), O adsorption energy (E O*), CO adsorption energy (E CO*), fermi energy (E) and d-band center, and yields prediction precision with relative error of 9.88 % (RMSE = 0.02 eV). This model avoids the extensive iterative process of high-dimensional spatial extreme value search and numerical optimization, and ∼5-fold reduction of computation time compared to the traditional nudged elastic band (NEB) method. This study represents a significant step towards transition state energy barriers prediction of surface catalytic reactions as a way to improve the efficiency of high-throughput screening catalysts.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
EI入藏号
20242916701446
EI主题词
Activation energy ; Adsorption ; Ammonia ; Backpropagation ; Catalysis ; Catalysts ; Catalytic oxidation ; Forecasting ; Iterative methods ; Kinetic theory ; Numerical methods ; Optimization ; Radial basis function networks ; Sensitivity analysis ; Surface reactions
EI分类号
Air Pollution Control:451.2 ; Artificial Intelligence:723.4 ; Chemical Reactions:802.2 ; Chemical Operations:802.3 ; Chemical Agents and Basic Industrial Chemicals:803 ; Chemical Products Generally:804 ; Inorganic Compounds:804.2 ; Mathematics:921 ; Optimization Techniques:921.5 ; Numerical Methods:921.6
ESI学科分类
MATERIALS SCIENCE
Scopus记录号
2-s2.0-85198264681
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794383
专题工学院_力学与航空航天工程系
作者单位
1.Key Laboratory of Low-Grade Energy Utilization Technologies and Systems,Ministry of Education of PRC,Chongqing University,Chongqing,400044,China
2.School of Energy and Power Engineering,Chongqing University,Chongqing,400044,China
3.Faculty of Agriculture,University of Belgrade,Zemun-Belgrade,Nemanjina 6,11080,Serbia
4.College of Metrology and Measurement Engineering,China Jiliang University,Hangzhou,310018,China
5.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China
6.State Key Lab of Clean Energy Utilization,State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control,Zhejiang University,Hangzhou,Zhejiang,310027,China
推荐引用方式
GB/T 7714
Tang,Tian,Xue,Jingyu,Shen,Xiaoqiang,et al. Collaborative neural networks-accelerated prediction of transition state energy barriers for CO catalytic oxidation[J]. Journal of Alloys and Compounds,2024,1002.
APA
Tang,Tian.,Xue,Jingyu.,Shen,Xiaoqiang.,Chen,Jinfei.,Rac,Vladislav.,...&Du,Xuesen.(2024).Collaborative neural networks-accelerated prediction of transition state energy barriers for CO catalytic oxidation.Journal of Alloys and Compounds,1002.
MLA
Tang,Tian,et al."Collaborative neural networks-accelerated prediction of transition state energy barriers for CO catalytic oxidation".Journal of Alloys and Compounds 1002(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tang,Tian]的文章
[Xue,Jingyu]的文章
[Shen,Xiaoqiang]的文章
百度学术
百度学术中相似的文章
[Tang,Tian]的文章
[Xue,Jingyu]的文章
[Shen,Xiaoqiang]的文章
必应学术
必应学术中相似的文章
[Tang,Tian]的文章
[Xue,Jingyu]的文章
[Shen,Xiaoqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。