中文版 | English
题名

SML: A Skeleton-based multi-feature learning method for sign language recognition

作者
通讯作者Gao,Qing
发表日期
2024-10-09
DOI
发表期刊
ISSN
0950-7051
卷号301
摘要
Sign language recognition (SLR) is an effective solution to communication barriers experienced by hearing and vocally impaired individuals with other communities. Its applications extend to human–robot interaction (HRI), virtual reality (VR), and augmented reality (AR). However, the diverse nature of sign languages, stemming from varying user habits and geographical regions, poses significant challenges. To address these challenges, we propose the Skeleton-based Multi-feature Learning method (SML). This method comprises a Multi Feature Aggregation (MFA) module, designed to capture the inherent relationships between different skeleton-based features, enabling effective fusion of complementary information. Furthermore, we propose the Self knowledge distillation Guided Adaptive Residual Decoupled Graph Convolutional Network (SGAR-DGCN) for feature extraction. SGAR-DGCN consists of three components: a Self Knowledge Distillation (SKD) mechanism to enhance model training, convergence, and accuracy; a DGCN-Block, incorporating Decoupled GCN and Spatio Temporal Channel attention (STC) for efficient feature extraction; and an Adaptive Residual Block (ARes-Block) for cross-layer information fusion. Experimental results demonstrate that our SML method outperforms state-of-the-art approaches on the WLASL (55.85%) and AUTSL (96.85%) datasets, solely utilizing skeleton data. Code is available at https://github.com/DzwFine37/SML.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85200267721
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794385
专题工学院_机械与能源工程系
作者单位
1.School of Electronics and Communication Engineering,Shenzhen Campus of Sun Yat-sen University,Shenzhen,518107,China
2.School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing,400065,China
3.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,518055,China
4.Department of Computer Science and Engineering,University at Buffalo,Buffalo,14221,United States
推荐引用方式
GB/T 7714
Deng,Zhiwen,Leng,Yuquan,Hu,Jing,et al. SML: A Skeleton-based multi-feature learning method for sign language recognition[J]. Knowledge-Based Systems,2024,301.
APA
Deng,Zhiwen,Leng,Yuquan,Hu,Jing,Lin,Zengrong,Li,Xuerui,&Gao,Qing.(2024).SML: A Skeleton-based multi-feature learning method for sign language recognition.Knowledge-Based Systems,301.
MLA
Deng,Zhiwen,et al."SML: A Skeleton-based multi-feature learning method for sign language recognition".Knowledge-Based Systems 301(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Deng,Zhiwen]的文章
[Leng,Yuquan]的文章
[Hu,Jing]的文章
百度学术
百度学术中相似的文章
[Deng,Zhiwen]的文章
[Leng,Yuquan]的文章
[Hu,Jing]的文章
必应学术
必应学术中相似的文章
[Deng,Zhiwen]的文章
[Leng,Yuquan]的文章
[Hu,Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。