中文版 | English
题名

Multi-objective meta-learning

作者
通讯作者Zhang,Yu
发表日期
2024-10-01
DOI
发表期刊
ISSN
0004-3702
卷号335
摘要
Meta-learning has arisen as a powerful tool for many machine learning problems. With multiple factors to be considered when designing learning models for real-world applications, meta-learning with multiple objectives has attracted much attention recently. However, existing works either linearly combine multiple objectives into one objective or adopt evolutionary algorithms to handle it, where the former approach needs to pay high computational cost to tune the combination coefficients while the latter approach is computationally heavy and incapable to be integrated into gradient-based optimization. To alleviate those limitations, in this paper, we aim to propose a generic gradient-based Multi-Objective Meta-Learning (MOML) framework with applications in many machine learning problems. Specifically, the MOML framework formulates the objective function of meta-learning with multiple objectives as a Multi-Objective Bi-Level optimization Problem (MOBLP) where the upper-level subproblem is to solve several possibly conflicting objectives for the meta-learner. Different from those existing works, in this paper, we propose a gradient-based algorithm to solve the MOBLP. Specifically, we devise the first gradient-based optimization algorithm by alternately solving the lower-level and upper-level subproblems via the gradient descent method and the gradient-based multi-objective optimization method, respectively. Theoretically, we prove the convergence property and provide a non-asymptotic analysis of the proposed gradient-based optimization algorithm. Empirically, extensive experiments justify our theoretical results and demonstrate the superiority of the proposed MOML framework for different learning problems, including few-shot learning, domain adaptation, multi-task learning, neural architecture search, and reinforcement learning. The source code of MOML is available at https://github.com/Baijiong-Lin/MOML.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85200150069
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794391
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.Australian Artificial Intelligence Institute,University of Technology Sydney,Sydney,Australia
3.The Hong Kong University of Science and Technology (Guangzhou),Guangzhou,China
4.Centre for Frontier AI Research,Agency for Science,Technology and Research,Singapore
5.Institute of High Performance Computing,Agency for Science,Technology and Research,Singapore
6.Shanghai Artificial Intelligence Laboratory,Shanghai,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Ye,Feiyang,Lin,Baijiong,Yue,Zhixiong,et al. Multi-objective meta-learning[J]. Artificial Intelligence,2024,335.
APA
Ye,Feiyang,Lin,Baijiong,Yue,Zhixiong,Zhang,Yu,&Tsang,Ivor W..(2024).Multi-objective meta-learning.Artificial Intelligence,335.
MLA
Ye,Feiyang,et al."Multi-objective meta-learning".Artificial Intelligence 335(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ye,Feiyang]的文章
[Lin,Baijiong]的文章
[Yue,Zhixiong]的文章
百度学术
百度学术中相似的文章
[Ye,Feiyang]的文章
[Lin,Baijiong]的文章
[Yue,Zhixiong]的文章
必应学术
必应学术中相似的文章
[Ye,Feiyang]的文章
[Lin,Baijiong]的文章
[Yue,Zhixiong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。