中文版 | English
题名

Detecting slow slip events in the Cascadia subduction zone from GNSS time series using deep learning

作者
通讯作者Chen,Kejie
发表日期
2024-10-01
DOI
发表期刊
ISSN
1080-5370
EISSN
1521-1886
卷号28期号:4
摘要
Slow Slip Events (SSEs) are like long-duration slow earthquakes during which stress is gradually released over several days to months, and a comprehensive catalog of SSEs is essential for a better understanding of the earthquake cycle. However, SSEs usually only produce mm to cm surface deformations, making them a challenge to identify from raw Global Navigation Satellite System (GNSS) time series, which are often obscured by low-frequency background noise. We devise an approach that first employs variational Bayesian Independent Component Analysis to improve the signal-to-noise ratio of GNSS time series and then utilizes deep learning combining bidirectional Long Short-Term Memory and two different attention mechanisms to identify SSEs. We apply this new method to the GNSS three-component time series at 240 stations along the Cascadia subduction zone from 2012 to 2022. A total of 56 SSEs are detected, 18 more than the number in the existing SSEs catalogs during the same period. The starting time, duration, spatial and propagation pattern of the 56 SSEs are consistent with the tremor catalog, which helps to gain new insights into the slip behavior in the Cascadia subduction zone. In general, our work provides an effective framework for extracting subtle signals hidden in GNSS time series.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
EI入藏号
20243016738964
EI主题词
Communication satellites ; Deep learning ; Earthquakes ; Global positioning system ; Independent component analysis ; Remote sensing ; Signal processing ; Signal to noise ratio ; Time series analysis
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Seismology:484 ; Communication Satellites:655.2.1 ; Information Theory and Signal Processing:716.1 ; Mathematical Statistics:922.2
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85199099769
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794402
专题理学院_地球与空间科学系
前沿与交叉科学研究院
作者单位
1.Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen,518055,China
2.Institute of Risk Analysis,Prediction and Management (Risks-X),Academy for Advanced Interdisciplinary Studies,Southern University of Science and Technology,Shenzhen,518055,China
3.Key Laboratory of Poyang Lake Wetland and Watershed Research,Ministry of Education,Jiangxi Normal University,Nanchang,330022,China
4.Institute of Geophysics,Department of Earth Sciences,ETH Zürich,Zurich,Switzerland
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系;  前沿与交叉科学研究院
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Wang,Ji,Chen,Kejie,Zhu,Hai,et al. Detecting slow slip events in the Cascadia subduction zone from GNSS time series using deep learning[J]. GPS Solutions,2024,28(4).
APA
Wang,Ji.,Chen,Kejie.,Zhu,Hai.,Hu,Shunqiang.,Wei,Guoguang.,...&Xia,Lei.(2024).Detecting slow slip events in the Cascadia subduction zone from GNSS time series using deep learning.GPS Solutions,28(4).
MLA
Wang,Ji,et al."Detecting slow slip events in the Cascadia subduction zone from GNSS time series using deep learning".GPS Solutions 28.4(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Ji]的文章
[Chen,Kejie]的文章
[Zhu,Hai]的文章
百度学术
百度学术中相似的文章
[Wang,Ji]的文章
[Chen,Kejie]的文章
[Zhu,Hai]的文章
必应学术
必应学术中相似的文章
[Wang,Ji]的文章
[Chen,Kejie]的文章
[Zhu,Hai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。