中文版 | English
题名

How Does Software Prefetching Work on GPU Query Processing?

作者
通讯作者Tang, Bo
DOI
发表日期
2024-06-10
会议名称
20th International Workshop on Data Management on New Hardware, DaMoN 2024
ISBN
9798400706677
会议录名称
会议日期
June 10, 2024
会议地点
Santiago, Chile
会议录编者/会议主办者
Alibaba Cloud; amazon; Google Research; intel; SAP
出版者
摘要
Improving the performance of GPU query processing is a well-studied problem in database community. However, its performance is still unsatisfactory due to the low utilization of GPU memory bandwidth. In the literature, employing software prefetching techniques to improve the bandwidth utilization is a common practice in CPU database as it overlaps computation cost and memory access latency. However, it was ignored by GPU database even though the software prefetching ability has been provided by modern GPU architecture (i.e., from NVIDIA Ampere). In order to investigate the effectiveness of software prefetching techniques on GPU query processing, we implement four software prefetching algorithms on GPU, i.e., Group Prefetch (GP), Software-Pipelined Prefetch (SPP), Asynchronous Memory Access Chaining (AMAC) and Interleaved Multi-Vectorizing (IMV) in the work. We then adapt them on hash join probe and BTree search tasks with a suite of optimizations. Last, we conduct comprehensive experiments and evaluate the performance of them. The results confirm the superiority of software prefetching techniques on GPU query processing. Specifically, they can achieve up to 1.19X speedup on hash join probe and 1.31X speedup on BTree search when compared with the implementations without software prefetching.
© 2024 ACM.
学校署名
第一 ; 通讯
语种
英语
收录类别
资助项目
We thank all reviewers for their constructive feedback to help us improve the quality of this paper. This work is partially sup- ported by Shenzhen Fundamental Research Program (Grant No. 20220815112848002), the Guangdong Provincial Key Laboratory (Grant No. 2020B121201001) and a research gift from Huawei Gauss department. Dr. Bo Tang is also affiliated with the Research Insti- tute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China.
EI入藏号
20242416260722
EI主题词
Bandwidth ; Database systems ; Memory architecture ; Pipeline processing systems ; Probes ; Query processing
EI分类号
Semiconductor Devices and Integrated Circuits:714.2 ; Information Theory and Signal Processing:716.1 ; Computer Circuits:721.3 ; Computer Systems and Equipment:722 ; Digital Computers and Systems:722.4 ; Database Systems:723.3
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794474
专题工学院_计算机科学与工程系
南方科技大学
作者单位
Department of Computer Science and Engineering, Southern University of Science and Technology, AlayaDB Ai, Guangdong, Shenzhen, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Deng, Yangshen,Chen, Shiwen,Hong, Zhaoyang,et al. How Does Software Prefetching Work on GPU Query Processing?[C]//Alibaba Cloud; amazon; Google Research; intel; SAP:Association for Computing Machinery, Inc,2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Deng, Yangshen]的文章
[Chen, Shiwen]的文章
[Hong, Zhaoyang]的文章
百度学术
百度学术中相似的文章
[Deng, Yangshen]的文章
[Chen, Shiwen]的文章
[Hong, Zhaoyang]的文章
必应学术
必应学术中相似的文章
[Deng, Yangshen]的文章
[Chen, Shiwen]的文章
[Hong, Zhaoyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。