中文版 | English
题名

SBCR: Stochasticity Beats Content Restriction Problem in Training and Tuning Free Image Editing

作者
通讯作者Chen, Shifeng
DOI
发表日期
2024-05-30
会议名称
2024 International Conference on Multimedia Retrieval, ICMR 2024
ISBN
9798400706028
会议录名称
页码
878-887
会议日期
June 10, 2024 - June 14, 2024
会议地点
Phuket, Thailand
会议录编者/会议主办者
SIG MM
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
Text-conditional image editing is a practical AIGC task that has recently emerged with great commercial and academic value. For real image editing, most diffusion model-based methods use DDIM Inversion as a first stage before editing. However, DDIM Inversion often results in reconstruction failure, leading to unsatisfactory performance for downstream editing. Many inversion-based works modify the formula to address this problem but this leads to another content restriction problem. To solve the content restriction problem, we first analyze why the reconstruction via DDIM Inversion fails and then propose Reconstruction-and-Generation Balancing Noises (R&G-B noises) that can achieve superior reconstruction and editing performance with the following advantages: 1) It can perfectly reconstruct real images without fine-tuning. 2) It can overcome the content restriction problem and generate diverse content.
© 2024 Copyright held by the owner/author(s).
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
This work is supported by Shenzhen Science and Technology Innovation Commission (JCYJ20200109114835623, JSGG20220831105002004).
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001282078400096
EI入藏号
20243016752352
来源库
EV Compendex
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794484
专题南方科技大学
作者单位
1.Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
2.University of Chinese Academy of Sciences, Beijing, China
3.Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Huang, Jiancheng,Yan, Mingfu,Liu, Yifan,et al. SBCR: Stochasticity Beats Content Restriction Problem in Training and Tuning Free Image Editing[C]//SIG MM. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:Association for Computing Machinery, Inc,2024:878-887.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang, Jiancheng]的文章
[Yan, Mingfu]的文章
[Liu, Yifan]的文章
百度学术
百度学术中相似的文章
[Huang, Jiancheng]的文章
[Yan, Mingfu]的文章
[Liu, Yifan]的文章
必应学术
必应学术中相似的文章
[Huang, Jiancheng]的文章
[Yan, Mingfu]的文章
[Liu, Yifan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。