中文版 | English
题名

Debiasing Recommendation with Personal Popularity

作者
通讯作者Cheng, Reynold; Tang, Bo
DOI
发表日期
2024-05-13
会议名称
33rd ACM Web Conference, WWW 2024
ISBN
9798400701719
会议录名称
页码
3400-3409
会议日期
May 13, 2024 - May 17, 2024
会议地点
Singapore, Singapore
会议录编者/会议主办者
ACM SIGWEB
出版者
摘要
Global popularity (GP) bias is the phenomenon that popular items are recommended much more frequently than they should be, which goes against the goal of providing personalized recommendations and harms user experience and recommendation accuracy. Many methods have been proposed to reduce GP bias but they fail to notice the fundamental problem of GP, i.e., it considers popularity from a global perspective of all users and uses a single set of popular items, and thus cannot capture the interests of individual users. As such, we propose a user-aware version of item popularity named personal popularity (PP), which identifies different popular items for each user by considering the users that share similar interests. As PP models the preferences of individual users, it naturally helps to produce personalized recommendations and mitigate GP bias. To integrate PP into recommendation, we design a general personal popularity aware counterfactual (PPAC) framework, which adapts easily to existing recommendation models. In particular, PPAC recognizes that PP and GP have both direct and indirect effects on recommendations and controls direct effects with counterfactual inference techniques for unbiased recommendations. All codes and datasets are available at https://github.com/Stevenn9981/PPAC.
© 2024 ACM.
学校署名
通讯
语种
英语
收录类别
资助项目
Reynold Cheng, Wentao Ning, and Nan Huo were supported by the Hong Kong Jockey Club Charities Trust (Project 260920140), the University of Hong Kong (Project 109000579), the France/Hong Kong Joint Research Scheme 2020/21 (Project F-HKU702/20), and the HKU Outstanding Research Student Supervisor Award 2022-23. This work has also been partially supported by Shenzhen Fundamental Research Program (Grant No. 20220815112848002), the Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515110067), and a research gift from Huawei Gauss department.
EI入藏号
20242216163535
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794487
专题南方科技大学
作者单位
1.The University of Hong Kong, Hong Kong
2.Southern University of Science and Technology, China
3.Curtin University, Australia
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Ning, Wentao,Cheng, Reynold,Yan, Xiao,et al. Debiasing Recommendation with Personal Popularity[C]//ACM SIGWEB:Association for Computing Machinery, Inc,2024:3400-3409.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ning, Wentao]的文章
[Cheng, Reynold]的文章
[Yan, Xiao]的文章
百度学术
百度学术中相似的文章
[Ning, Wentao]的文章
[Cheng, Reynold]的文章
[Yan, Xiao]的文章
必应学术
必应学术中相似的文章
[Ning, Wentao]的文章
[Cheng, Reynold]的文章
[Yan, Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。