中文版 | English
题名

Decentralized Collaborative Learning with Adaptive Reference Data for On-Device POI Recommendation

作者
通讯作者Shi, Yuhui; Yin, Hongzhi
DOI
发表日期
2024-05-13
会议名称
33rd ACM Web Conference, WWW 2024
ISBN
9798400701719
会议录名称
页码
3930-3939
会议日期
May 13, 2024 - May 17, 2024
会议地点
Singapore, Singapore
会议录编者/会议主办者
ACM SIGWEB
出版者
摘要
In Location-based Social Networks (LBSNs), Point-of-Interest (POI) recommendation helps users discover interesting places. There is a trend to move from the conventional cloud-based model to on-device recommendations for privacy protection and reduced server reliance. Due to the scarcity of local user-item interactions on individual devices, solely relying on local instances is not adequate. Collaborative Learning (CL) emerges to promote model sharing among users. Central to this CL paradigm is reference data, which is an intermediary that allows users to exchange their soft decisions without directly sharing their private data or parameters, ensuring privacy and benefiting from collaboration. While recent efforts have developed CL-based POI frameworks for robust and privacy-centric recommendations, they typically use a single and unified reference for all users. Reference data that proves valuable for one user might be harmful to another, given the wide range of user preferences. Some users may not offer meaningful soft decisions on items outside their interest scope. Consequently, using the same reference data for all collaborations can impede knowledge exchange and lead to sub-optimal performance. To address this gap, we introduce the Decentralized Collaborative Learning with Adaptive Reference Data (DARD) framework, which crafts adaptive reference data for effective user collaboration. It first generates a desensitized public reference data pool with transformation and probability data generation methods. For each user, the selection of adaptive reference data is executed in parallel by training loss tracking and influence function. Local models are trained with individual private data and collaboratively with the geographical and semantic neighbors. During the collaboration between two users, they exchange soft decisions based on a combined set of their adaptive reference data. Our evaluations across two real-world datasets highlight DARD's superiority in recommendation performance and addressing the scarcity of available reference data.
© 2024 ACM.
学校署名
第一 ; 通讯
语种
英语
收录类别
资助项目
This work is supported by the National Science Foundation of China (Grant No. 61761136008), Australian Research Council under the streams of Future Fellowship (Grant No. FT210100624), the Discovery Early Career Researcher Award (Grant No. DE230101033), Discovery Project (Grants No. DP240101108 and No. DP240101814), Industrial Transformation Training Centre (Grant No. IC200100022), the Shenzhen Fundamental Research Program under Grant No. JCYJ20200109141235597, Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515110024), Shenzhen Peacock Plan (Grant No. KQTD2016112514355531), and Program for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No. 2017ZT07X386).
EI入藏号
20242216163508
EI主题词
Data privacy ; Knowledge management ; Metadata ; Recommender systems ; Semantics ; User profile
EI分类号
Computer Applications:723.5 ; Information Retrieval and Use:903.3
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794488
专题南方科技大学
作者单位
1.Southern University of Science and Technology, Shenzhen, China
2.The University of Queensland, Brisbane, Australia
3.Shandong University, Jinan, China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zheng, Ruiqi,Qu, Liang,Chen, Tong,et al. Decentralized Collaborative Learning with Adaptive Reference Data for On-Device POI Recommendation[C]//ACM SIGWEB:Association for Computing Machinery, Inc,2024:3930-3939.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng, Ruiqi]的文章
[Qu, Liang]的文章
[Chen, Tong]的文章
百度学术
百度学术中相似的文章
[Zheng, Ruiqi]的文章
[Qu, Liang]的文章
[Chen, Tong]的文章
必应学术
必应学术中相似的文章
[Zheng, Ruiqi]的文章
[Qu, Liang]的文章
[Chen, Tong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。