中文版 | English
题名

Towards Personalized Privacy: User-Governed Data Contribution for Federated Recommendation

作者
通讯作者Shi, Yuhui; Yin, Hongzhi
DOI
发表日期
2024-05-13
会议名称
33rd ACM Web Conference, WWW 2024
ISBN
9798400701719
会议录名称
页码
3910-3918
会议日期
May 13, 2024 - May 17, 2024
会议地点
Singapore, Singapore
会议录编者/会议主办者
ACM SIGWEB
出版者
摘要
Federated recommender systems (FedRecs) have gained significant attention for their potential to protect user's privacy by keeping user privacy data locally and only communicating model parameters/gradients to the server. Nevertheless, the currently existing architecture of FedRecs assumes that all users have the same 0-privacy budget, i.e., they do not upload any data to the server, thus overlooking those users who are less concerned about privacy and are willing to upload data to get a better recommendation service. To bridge this gap, this paper explores a user-governed data contribution federated recommendation architecture where users are free to take control of whether they share data and the proportion of data they share to the server. To this end, this paper presents a cloud-device collaborative graph neural network federated recommendation model, named CDCGNNFed. It trains user-centric ego graphs locally, and high-order graphs based on user-shared data in the server in a collaborative manner via contrastive learning. Furthermore, a graph mending strategy is utilized to predict missing links in the graph on the server, thus leveraging the capabilities of graph neural networks over high-order graphs. Extensive experiments were conducted on two public datasets, and the results demonstrate the effectiveness of the proposed method.
© 2024 ACM.
学校署名
通讯
语种
英语
收录类别
资助项目
This work is supported by the Australian Research Council under the streams of Future Fellowship (Grant No. FT210100624), the Discovery Project (Grants No. DP240101108), the Shenzhen Fundamental Research Program under Grant No. JCYJ20200109141235597, the National Science Foundation of China under Grant No. 61761136008, the Shenzhen Peacock Plan under Grant No. KQTD2016112514355531, and the Program for Guangdong Introducing Innovative and Entrepreneurial Teams under Grant No. 2017ZT07X386.
EI入藏号
20242216163502
EI主题词
Budget control ; Data privacy ; Graph neural networks ; Learning systems ; Network architecture
EI分类号
Artificial Intelligence:723.4 ; Computer Applications:723.5
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794489
专题南方科技大学
作者单位
1.The University of Queensland, Brisbane, Australia
2.Shandong University, Jinan, China
3.Southern University of Science and Technology, Shenzhen, China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Qu, Liang,Yuan, Wei,Zheng, Ruiqi,et al. Towards Personalized Privacy: User-Governed Data Contribution for Federated Recommendation[C]//ACM SIGWEB:Association for Computing Machinery, Inc,2024:3910-3918.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qu, Liang]的文章
[Yuan, Wei]的文章
[Zheng, Ruiqi]的文章
百度学术
百度学术中相似的文章
[Qu, Liang]的文章
[Yuan, Wei]的文章
[Zheng, Ruiqi]的文章
必应学术
必应学术中相似的文章
[Qu, Liang]的文章
[Yuan, Wei]的文章
[Zheng, Ruiqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。