题名 | RV-GEMM: Neural Network Inference Acceleration with Near-Memory GEMM Instructions on RISC-V |
作者 | |
通讯作者 | Ye, Terry Tao |
DOI | |
发表日期 | 2024-05-07
|
会议名称 | 21st ACM International Conference on Computing Frontiers, CF 2024
|
ISBN | 9798400705977
|
会议录名称 | |
页码 | 302-305
|
会议日期 | May 7, 2024 - May 9, 2024
|
会议地点 | Ischia, Italy
|
会议录编者/会议主办者 | ACM; AXELERA; CINECA; E4 Computer Engineering; SIGMICRO; Tactical Computing Labs (TCL)
|
出版者 | |
摘要 | General Matrix Multiply (GEMM), as a fundamental operation in neural network, plays an important role in artificial intelligence and signal processing applications. In this paper, we proposed three SMID RISC-V custom instructions to accelerate GEMM computations, supporting multiple precisions including 32-bit, 16-bit and 8-bit fixed. Furthermore, we implemented address calculation and loop control units along with the GEMM acceleration module to reduce the memory access overhead. These three GEMM custom instructions, along with the near-memory optimization units, were incorporated in the RV-GEMM processor and implemented on the FPGA platform for speedup evaluation. It was also compiled in Synopsys Design Compiler with CMOS 55nm process for hardware overhead estimation. Compared to the baseline RISC-V processor, for GEMM computations under precisions of 32-bit, 16-bit and 8-bit fixed, the RV-GEMM processor achieved speedup ratios of 15.8×, 28.7× and 42.5×. The peak energy efficiency also reached 260 GOPS/W, 420 GOPS/W and 609 GOPS/W, respectively. © 2024 Owner/Author. |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
收录类别 | |
EI入藏号 | 20242916732031
|
EI主题词 | Acceleration
; Signal processing
|
EI分类号 | Energy Conservation:525.2
; Information Theory and Signal Processing:716.1
|
来源库 | EV Compendex
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/794502 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology, Shenzhen, China 2.The University of British Columbia, Vancouver; BC, Canada 3.Hong Kong University of Science and Technology, Hong Kong |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Wang, Xingbo,Feng, Chenxi,Chen, Bingzhen,et al. RV-GEMM: Neural Network Inference Acceleration with Near-Memory GEMM Instructions on RISC-V[C]//ACM; AXELERA; CINECA; E4 Computer Engineering; SIGMICRO; Tactical Computing Labs (TCL):Association for Computing Machinery, Inc,2024:302-305.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论