中文版 | English
题名

RV-GEMM: Neural Network Inference Acceleration with Near-Memory GEMM Instructions on RISC-V

作者
通讯作者Ye, Terry Tao
DOI
发表日期
2024-05-07
会议名称
21st ACM International Conference on Computing Frontiers, CF 2024
ISBN
9798400705977
会议录名称
页码
302-305
会议日期
May 7, 2024 - May 9, 2024
会议地点
Ischia, Italy
会议录编者/会议主办者
ACM; AXELERA; CINECA; E4 Computer Engineering; SIGMICRO; Tactical Computing Labs (TCL)
出版者
摘要
General Matrix Multiply (GEMM), as a fundamental operation in neural network, plays an important role in artificial intelligence and signal processing applications. In this paper, we proposed three SMID RISC-V custom instructions to accelerate GEMM computations, supporting multiple precisions including 32-bit, 16-bit and 8-bit fixed. Furthermore, we implemented address calculation and loop control units along with the GEMM acceleration module to reduce the memory access overhead. These three GEMM custom instructions, along with the near-memory optimization units, were incorporated in the RV-GEMM processor and implemented on the FPGA platform for speedup evaluation. It was also compiled in Synopsys Design Compiler with CMOS 55nm process for hardware overhead estimation. Compared to the baseline RISC-V processor, for GEMM computations under precisions of 32-bit, 16-bit and 8-bit fixed, the RV-GEMM processor achieved speedup ratios of 15.8×, 28.7× and 42.5×. The peak energy efficiency also reached 260 GOPS/W, 420 GOPS/W and 609 GOPS/W, respectively.
© 2024 Owner/Author.
学校署名
第一 ; 通讯
语种
英语
收录类别
EI入藏号
20242916732031
EI主题词
Acceleration ; Signal processing
EI分类号
Energy Conservation:525.2 ; Information Theory and Signal Processing:716.1
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794502
专题南方科技大学
作者单位
1.Southern University of Science and Technology, Shenzhen, China
2.The University of British Columbia, Vancouver; BC, Canada
3.Hong Kong University of Science and Technology, Hong Kong
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Wang, Xingbo,Feng, Chenxi,Chen, Bingzhen,et al. RV-GEMM: Neural Network Inference Acceleration with Near-Memory GEMM Instructions on RISC-V[C]//ACM; AXELERA; CINECA; E4 Computer Engineering; SIGMICRO; Tactical Computing Labs (TCL):Association for Computing Machinery, Inc,2024:302-305.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Xingbo]的文章
[Feng, Chenxi]的文章
[Chen, Bingzhen]的文章
百度学术
百度学术中相似的文章
[Wang, Xingbo]的文章
[Feng, Chenxi]的文章
[Chen, Bingzhen]的文章
必应学术
必应学术中相似的文章
[Wang, Xingbo]的文章
[Feng, Chenxi]的文章
[Chen, Bingzhen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。