中文版 | English
题名

The mechanism for annealing-induced ductile to brittle transition in a high-temperature titanium alloy and its mitigation

作者
通讯作者Wang, Shuai
发表日期
2024-04
DOI
发表期刊
ISSN
0921-5093
卷号898
摘要
By investigating the relation between microstructure evolution and tensile responses of a BTi6431S alloy at room temperature and 700 °C, this study finds an annealing-induced ductile-to-brittle transition phenomenon in the near-α titanium alloy. The high strength of the as-received BTi6431S alloy is rooted in the high dislocation density and collective dislocation behavior in the α phase. However, after annealing at 650 °C, the alloy exhibits brittle fracture at room temperature. Using multiscale characterization methods, we attribute this phenomenon to the presence of brittle precipitates and the change of dislocation structures near the surface of BTi6431S titanium alloy. Silicides are generated in the vicinity of the surface region due to the relatively high dislocation density on the surface after the rolling process. The room temperature ductility can be restored by removing the near-surface area. When the alloy is tested at 700 °C, most of the near-surface brittle silicides and dislocations can be eliminated, because the deformation is mainly affected by dislocation behavior and dynamic recrystallization at high temperature. The findings in this study can advance the understanding of alloying effects on the mechanical behavior of high-temperature titanium alloy. The results suggest that inhibiting silicide formation and controlling the environmental temperature during service are potential approaches for maintaining the mechanical performance of this near-α titanium alloy.
© 2024 Elsevier B.V.
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
This work is supported by the National Key R&D Program of China (No. 2022YFB4650700 ). The authors gratefully acknowledge the support from the Shenzhen Science and Technology Innovation Commission through awards JCYJ20210324104414040 , and 20220815150609002 . SW acknowledges the support from the Key-Area Research Project of the Guangdong Province Department of Education (No. 2022ZDZX3021 ). All authors gratefully acknowledge the assistance from Dr. Yang Qiu and Dr. Dongsheng He at SUStech Interior Research Facilities.
出版者
EI入藏号
20241315800151
EI主题词
Annealing ; Brittle fracture ; Ductile fracture ; Ductility ; Dynamic recrystallization ; Fracture mechanics ; High strength alloys ; Titanium alloys
EI分类号
Metallurgy:531.1 ; Heat Treatment Processes:537.1 ; Titanium and Alloys:542.3 ; Chemical Products Generally:804 ; Mechanics:931.1 ; Materials Science:951
ESI学科分类
MATERIALS SCIENCE
来源库
EV Compendex
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794511
专题工学院_机械与能源工程系
南方科技大学
作者单位
1.Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Guangdong, Shenzhen; 518055, China
2.Baoji Titanium Industry Co., Ltd., Shanxi, Baoji; 721014, China
3.Hefei First People's Hospital, Anhui, Hefei; 230000, China
第一作者单位机械与能源工程系
通讯作者单位机械与能源工程系
第一作者的第一单位机械与能源工程系
推荐引用方式
GB/T 7714
Zhang, Haizheng,Lin, Bin,Sun, Qingqing,et al. The mechanism for annealing-induced ductile to brittle transition in a high-temperature titanium alloy and its mitigation[J]. Materials Science and Engineering: A,2024,898.
APA
Zhang, Haizheng,Lin, Bin,Sun, Qingqing,Liu, Jixiong,Ning, Bo,&Wang, Shuai.(2024).The mechanism for annealing-induced ductile to brittle transition in a high-temperature titanium alloy and its mitigation.Materials Science and Engineering: A,898.
MLA
Zhang, Haizheng,et al."The mechanism for annealing-induced ductile to brittle transition in a high-temperature titanium alloy and its mitigation".Materials Science and Engineering: A 898(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Haizheng]的文章
[Lin, Bin]的文章
[Sun, Qingqing]的文章
百度学术
百度学术中相似的文章
[Zhang, Haizheng]的文章
[Lin, Bin]的文章
[Sun, Qingqing]的文章
必应学术
必应学术中相似的文章
[Zhang, Haizheng]的文章
[Lin, Bin]的文章
[Sun, Qingqing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。