题名 | Rethinking Mesh Watermark: Towards Highly Robust and Adaptable Deep 3D Mesh Watermarking |
作者 | |
通讯作者 | Wei, Xuetao |
DOI | |
发表日期 | 2024-03-25
|
会议名称 | 38th AAAI Conference on Artificial Intelligence, AAAI 2024
|
ISSN | 2159-5399
|
EISSN | 2374-3468
|
ISBN | 9781577358879
|
会议录名称 | |
卷号 | 38
|
页码 | 7784-7792
|
会议日期 | February 20, 2024 - February 27, 2024
|
会议地点 | Vancouver, BC, Canada
|
会议录编者/会议主办者 | Association for the Advancement of Artificial Intelligence
|
出版地 | 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
|
出版者 | |
摘要 | The goal of 3D mesh watermarking is to embed the message in 3D meshes that can withstand various attacks imperceptibly and reconstruct the message accurately from watermarked meshes.The watermarking algorithm is supposed to withstand multiple attacks, and the complexity should not grow significantly with the mesh size.Unfortunately, previous methods are less robust against attacks and lack of adaptability.In this paper, we propose a robust and adaptable deep 3D mesh watermarking DE E P3DMA R K that leverages attention-based convolutions in watermarking tasks to embed binary messages in vertex distributions without texture assistance.Furthermore, our DE E P3DMA R K exploits the property that simplified meshes inherit similar relations from the original ones, where the relation is the offset vector directed from one vertex to its neighbor.By doing so, our method can be trained on simplified meshes but remains effective on large size meshes (size adaptable) and unseen categories of meshes (geometry adaptable).Extensive experiments demonstrate our method remains efficient and effective even if the mesh size is 190× increased.Under mesh attacks, DE E P3DMA R K achieves 10%∼50% higher accuracy than traditional methods, and 2× higher SNR and 8% higher accuracy than previous DNN-based methods. Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org).All rights reserved. |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | This work was supported in part by National Key R&D Program of China under Grant 2021YFF0900300, in part by Key Talent Programs of Guangdong Province under Grant 2021QN02X166, and in part by Research Institute of Trustworthy Autonomous Systems under Grant C211153201.Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding parties.
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:001239937300143
|
EI入藏号 | 20241515870323
|
EI主题词 | Artificial intelligence
; Mesh generation
; Watermarking
|
EI分类号 | Artificial Intelligence:723.4
; Computer Applications:723.5
; Papermaking Processes:811.1.1
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
来源库 | EV Compendex
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/794514 |
专题 | 工学院_斯发基斯可信自主研究院 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen; 518055, China 2.Department of Computer Science and Engineering, Southern University of Science and Technology, China 3.Department of Computing, Hong Kong Polytechnic University, Hong Kong |
第一作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
通讯作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院 |
推荐引用方式 GB/T 7714 |
Zhu, Xingyu,Ye, Guanhui,Luo, Xiapu,et al. Rethinking Mesh Watermark: Towards Highly Robust and Adaptable Deep 3D Mesh Watermarking[C]//Association for the Advancement of Artificial Intelligence. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:Association for the Advancement of Artificial Intelligence,2024:7784-7792.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论