中文版 | English
题名

Rethinking Mesh Watermark: Towards Highly Robust and Adaptable Deep 3D Mesh Watermarking

作者
通讯作者Wei, Xuetao
DOI
发表日期
2024-03-25
会议名称
38th AAAI Conference on Artificial Intelligence, AAAI 2024
ISSN
2159-5399
EISSN
2374-3468
ISBN
9781577358879
会议录名称
卷号
38
页码
7784-7792
会议日期
February 20, 2024 - February 27, 2024
会议地点
Vancouver, BC, Canada
会议录编者/会议主办者
Association for the Advancement of Artificial Intelligence
出版地
2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
出版者
摘要
The goal of 3D mesh watermarking is to embed the message in 3D meshes that can withstand various attacks imperceptibly and reconstruct the message accurately from watermarked meshes.The watermarking algorithm is supposed to withstand multiple attacks, and the complexity should not grow significantly with the mesh size.Unfortunately, previous methods are less robust against attacks and lack of adaptability.In this paper, we propose a robust and adaptable deep 3D mesh watermarking DE E P3DMA R K that leverages attention-based convolutions in watermarking tasks to embed binary messages in vertex distributions without texture assistance.Furthermore, our DE E P3DMA R K exploits the property that simplified meshes inherit similar relations from the original ones, where the relation is the offset vector directed from one vertex to its neighbor.By doing so, our method can be trained on simplified meshes but remains effective on large size meshes (size adaptable) and unseen categories of meshes (geometry adaptable).Extensive experiments demonstrate our method remains efficient and effective even if the mesh size is 190× increased.Under mesh attacks, DE E P3DMA R K achieves 10%∼50% higher accuracy than traditional methods, and 2× higher SNR and 8% higher accuracy than previous DNN-based methods.
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org).All rights reserved.
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
This work was supported in part by National Key R&D Program of China under Grant 2021YFF0900300, in part by Key Talent Programs of Guangdong Province under Grant 2021QN02X166, and in part by Research Institute of Trustworthy Autonomous Systems under Grant C211153201.Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding parties.
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001239937300143
EI入藏号
20241515870323
EI主题词
Artificial intelligence ; Mesh generation ; Watermarking
EI分类号
Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Papermaking Processes:811.1.1 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
来源库
EV Compendex
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794514
专题工学院_斯发基斯可信自主研究院
南方科技大学
工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen; 518055, China
2.Department of Computer Science and Engineering, Southern University of Science and Technology, China
3.Department of Computing, Hong Kong Polytechnic University, Hong Kong
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
通讯作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Zhu, Xingyu,Ye, Guanhui,Luo, Xiapu,et al. Rethinking Mesh Watermark: Towards Highly Robust and Adaptable Deep 3D Mesh Watermarking[C]//Association for the Advancement of Artificial Intelligence. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:Association for the Advancement of Artificial Intelligence,2024:7784-7792.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu, Xingyu]的文章
[Ye, Guanhui]的文章
[Luo, Xiapu]的文章
百度学术
百度学术中相似的文章
[Zhu, Xingyu]的文章
[Ye, Guanhui]的文章
[Luo, Xiapu]的文章
必应学术
必应学术中相似的文章
[Zhu, Xingyu]的文章
[Ye, Guanhui]的文章
[Luo, Xiapu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。