题名 | Learning Encodings for Constructive Neural Combinatorial Optimization Needs to Regret |
作者 | |
通讯作者 | Wang, Zhenkun |
DOI | |
发表日期 | 2024-03-25
|
会议名称 | 38th AAAI Conference on Artificial Intelligence, AAAI 2024
|
ISSN | 2159-5399
|
EISSN | 2374-3468
|
ISBN | 9781577358879
|
会议录名称 | |
卷号 | 38
|
页码 | 20803-20811
|
会议日期 | February 20, 2024 - February 27, 2024
|
会议地点 | Vancouver, BC, Canada
|
会议录编者/会议主办者 | Association for the Advancement of Artificial Intelligence
|
出版地 | 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
|
出版者 | |
摘要 | Deep-reinforcement-learning (DRL) based neural combinatorial optimization (NCO) methods have demonstrated efficiency without relying on the guidance of optimal solutions. As the most mainstream among them, the learning constructive heuristic (LCH) achieves high-quality solutions through a rapid autoregressive solution construction process. However, these LCH-based methods are deficient in convergency, and there is still a performance gap compared to the optimal. Intuitively, learning to regret some steps in the solution construction process is helpful to the training efficiency and network representations. This article proposes a novel regret-based mechanism for an advanced solution construction process. Our method can be applied as a plug-in to any existing LCH-based DRL-NCO method. Experimental results demonstrate the capability of our work to enhance the performance of various NCO models. Results also show that the proposed LCH-Regret outperforms the previous modification methods on several typical combinatorial optimization problems. The code and Supplementary File are available at https://github.com/SunnyR7/LCH-Regret. Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | This work is supported by the National Natural Science Foundation of China (Grant No. 62106096), Characteristic Innovation Project of Colleges and Universities in Guangdong Province, China (Grant No. 2022KTSCX110), Shenzhen Technology Plan, China (Grant No. JCYJ20220530113013031), and Special Funds for the Cultivation of Guangdong College Students\u2019 Scientific and Technological Innovation, China (\u201CClimbing Program\u201D Special Funds)(Grant No. pdjh2024c21606).
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:001241509500115
|
EI入藏号 | 20241515864158
|
EI主题词 | Construction
; Deep learning
; Efficiency
; Learning systems
; Reinforcement learning
; Signal encoding
|
EI分类号 | Construction Equipment and Methods; Surveying:405
; Ergonomics and Human Factors Engineering:461.4
; Information Theory and Signal Processing:716.1
; Artificial Intelligence:723.4
; Production Engineering:913.1
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
; Optimization Techniques:921.5
|
来源库 | EV Compendex
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/794519 |
专题 | 工学院_计算机科学与工程系 南方科技大学 工学院_系统设计与智能制造学院 |
作者单位 | 1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China 2.School of System Design and Intelligent Manufacturing, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 系统设计与智能制造学院; 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Sun, Rui,Zheng, Zhi,Wang, Zhenkun. Learning Encodings for Constructive Neural Combinatorial Optimization Needs to Regret[C]//Association for the Advancement of Artificial Intelligence. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:Association for the Advancement of Artificial Intelligence,2024:20803-20811.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论