中文版 | English
题名

Learning Encodings for Constructive Neural Combinatorial Optimization Needs to Regret

作者
通讯作者Wang, Zhenkun
DOI
发表日期
2024-03-25
会议名称
38th AAAI Conference on Artificial Intelligence, AAAI 2024
ISSN
2159-5399
EISSN
2374-3468
ISBN
9781577358879
会议录名称
卷号
38
页码
20803-20811
会议日期
February 20, 2024 - February 27, 2024
会议地点
Vancouver, BC, Canada
会议录编者/会议主办者
Association for the Advancement of Artificial Intelligence
出版地
2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
出版者
摘要
Deep-reinforcement-learning (DRL) based neural combinatorial optimization (NCO) methods have demonstrated efficiency without relying on the guidance of optimal solutions. As the most mainstream among them, the learning constructive heuristic (LCH) achieves high-quality solutions through a rapid autoregressive solution construction process. However, these LCH-based methods are deficient in convergency, and there is still a performance gap compared to the optimal. Intuitively, learning to regret some steps in the solution construction process is helpful to the training efficiency and network representations. This article proposes a novel regret-based mechanism for an advanced solution construction process. Our method can be applied as a plug-in to any existing LCH-based DRL-NCO method. Experimental results demonstrate the capability of our work to enhance the performance of various NCO models. Results also show that the proposed LCH-Regret outperforms the previous modification methods on several typical combinatorial optimization problems. The code and Supplementary File are available at https://github.com/SunnyR7/LCH-Regret.
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
This work is supported by the National Natural Science Foundation of China (Grant No. 62106096), Characteristic Innovation Project of Colleges and Universities in Guangdong Province, China (Grant No. 2022KTSCX110), Shenzhen Technology Plan, China (Grant No. JCYJ20220530113013031), and Special Funds for the Cultivation of Guangdong College Students\u2019 Scientific and Technological Innovation, China (\u201CClimbing Program\u201D Special Funds)(Grant No. pdjh2024c21606).
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001241509500115
EI入藏号
20241515864158
EI主题词
Construction ; Deep learning ; Efficiency ; Learning systems ; Reinforcement learning ; Signal encoding
EI分类号
Construction Equipment and Methods; Surveying:405 ; Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1 ; Artificial Intelligence:723.4 ; Production Engineering:913.1 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Optimization Techniques:921.5
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794519
专题工学院_计算机科学与工程系
南方科技大学
工学院_系统设计与智能制造学院
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.School of System Design and Intelligent Manufacturing, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
第一作者单位计算机科学与工程系
通讯作者单位系统设计与智能制造学院;  计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Sun, Rui,Zheng, Zhi,Wang, Zhenkun. Learning Encodings for Constructive Neural Combinatorial Optimization Needs to Regret[C]//Association for the Advancement of Artificial Intelligence. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:Association for the Advancement of Artificial Intelligence,2024:20803-20811.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sun, Rui]的文章
[Zheng, Zhi]的文章
[Wang, Zhenkun]的文章
百度学术
百度学术中相似的文章
[Sun, Rui]的文章
[Zheng, Zhi]的文章
[Wang, Zhenkun]的文章
必应学术
必应学术中相似的文章
[Sun, Rui]的文章
[Zheng, Zhi]的文章
[Wang, Zhenkun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。