中文版 | English
题名

Adversarial Initialization with Universal Adversarial Perturbation: A New Approach to Fast Adversarial Training

作者
通讯作者Yao, Xin
DOI
发表日期
2024-03-25
会议名称
38th AAAI Conference on Artificial Intelligence, AAAI 2024
ISSN
2159-5399
EISSN
2374-3468
ISBN
9781577358879
会议录名称
卷号
38
页码
21501-21509
会议日期
February 20, 2024 - February 27, 2024
会议地点
Vancouver, BC, Canada
会议录编者/会议主办者
Association for the Advancement of Artificial Intelligence
出版者
摘要
Traditional adversarial training, while effective at improving machine learning model robustness, is computationally intensive. Fast Adversarial Training (FAT) addresses this by using a single-step attack to generate adversarial examples more efficiently. Nonetheless, FAT is susceptible to a phenomenon known as catastrophic overfitting, wherein the model's adversarial robustness abruptly collapses to zero during the training phase. To address this challenge, recent studies have suggested adopting adversarial initialization with Fast Gradient Sign Method Adversarial Training (FGSM-AT), which recycles adversarial perturbations from prior epochs by computing gradient momentum. However, our research has uncovered a flaw in this approach. Given that data augmentation is employed during the training phase, the samples in each epoch are not identical. Consequently, the method essentially yields not the adversarial perturbation of a singular sample, but rather the Universal Adversarial Perturbation (UAP) of a sample and its data augmentation. This insight has led us to explore the potential of using UAPs for adversarial initialization within the context of FGSM-AT. We have devised various strategies for adversarial initialization utilizing UAPs, including single, class-based, and feature-based UAPs. Experiments conducted on three distinct datasets demonstrate that our method achieves an improved trade-off among robustness, computational cost, and memory footprint. Code is available at https://github.com/fzjcdt/fgsm-uap.
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
学校署名
第一 ; 通讯
语种
英语
收录类别
资助项目
This work was supported by the National Natural Science Foundation of China (Grant No. 62250710682), Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), the Program for Guangdong Introducing Innovative and Enterpreneurial Teams (Grant No. 2017ZT07X386), Research Institute of Trustworthy Autonomous Systems (RITAS), and Hong Kong Research Grants Council under the General Research Fund (Project No. 15200023).
EI入藏号
20241515874194
EI主题词
Artificial intelligence
EI分类号
Artificial Intelligence:723.4 ; Social Sciences:971
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794520
专题工学院_斯发基斯可信自主研究院
南方科技大学
工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen; 518055, China
2.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China
3.The Hong Kong Polytechnic University, Hong Kong
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
通讯作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Pan, Chao,Li, Qing,Yao, Xin. Adversarial Initialization with Universal Adversarial Perturbation: A New Approach to Fast Adversarial Training[C]//Association for the Advancement of Artificial Intelligence:Association for the Advancement of Artificial Intelligence,2024:21501-21509.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Pan, Chao]的文章
[Li, Qing]的文章
[Yao, Xin]的文章
百度学术
百度学术中相似的文章
[Pan, Chao]的文章
[Li, Qing]的文章
[Yao, Xin]的文章
必应学术
必应学术中相似的文章
[Pan, Chao]的文章
[Li, Qing]的文章
[Yao, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。