中文版 | English
题名

SkeletonGait: Gait Recognition Using Skeleton Maps

作者
通讯作者Yu, Shiqi
DOI
发表日期
2024-03-25
会议名称
38th AAAI Conference on Artificial Intelligence, AAAI 2024
ISSN
2159-5399
EISSN
2374-3468
ISBN
9781577358879
会议录名称
卷号
38
页码
1662-1669
会议日期
February 20, 2024 - February 27, 2024
会议地点
Vancouver, BC, Canada
会议录编者/会议主办者
Association for the Advancement of Artificial Intelligence
出版地
2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
出版者
摘要
The choice of the representations is essential for deep gait recognition methods. The binary silhouettes and skeletal coordinates are two dominant representations in recent literature, achieving remarkable advances in many scenarios. However, inherent challenges remain, in which silhouettes are not always guaranteed in unconstrained scenes, and structural cues have not been fully utilized from skeletons. In this paper, we introduce a novel skeletal gait representation named skeleton map, together with SkeletonGait, a skeleton-based method to exploit structural information from human skeleton maps. Specifically, the skeleton map represents the coordinates of human joints as a heatmap with Gaussian approximation, exhibiting a silhouette-like image devoid of exact body structure. Beyond achieving state-of-the-art performances over five popular gait datasets, more importantly, SkeletonGait uncovers novel insights about how important structural features are in describing gait and when they play a role. Furthermore, we propose a multi-branch architecture, named SkeletonGait++, to make use of complementary features from both skeletons and silhouettes. Experiments indicate that SkeletonGait++ outperforms existing state-of-the-art methods by a significant margin in various scenarios. For instance, it achieves an impressive rank-1 accuracy of over 85% on the challenging GREW dataset. The source code is available at https://github.com/ShiqiYu/OpenGait.
© 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
This work was supported by the National Natural Science Foundation of China under Grant 61976144 and the Shenzhen International Research Cooperation Project under Grant GJHZ20220913142611021.
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001239880400110
EI入藏号
20241515863957
EI主题词
Artificial intelligence ; Gait analysis ; Pattern recognition
EI分类号
Biomechanics, Bionics and Biomimetics:461.3 ; Artificial Intelligence:723.4
来源库
EV Compendex
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794521
专题工学院_计算机科学与工程系
南方科技大学
作者单位
1.Research Institute of Trustworthy Autonomous System, Southern University of Science and Technology, China
2.Department of Computer Science and Engineering, Southern University of Science and Technology, China
3.The University of Hong Kong, Hong Kong
第一作者单位南方科技大学;  计算机科学与工程系
通讯作者单位南方科技大学;  计算机科学与工程系
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Fan, Chao,Ma, Jingzhe,Jin, Dongyang,et al. SkeletonGait: Gait Recognition Using Skeleton Maps[C]//Association for the Advancement of Artificial Intelligence. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:Association for the Advancement of Artificial Intelligence,2024:1662-1669.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fan, Chao]的文章
[Ma, Jingzhe]的文章
[Jin, Dongyang]的文章
百度学术
百度学术中相似的文章
[Fan, Chao]的文章
[Ma, Jingzhe]的文章
[Jin, Dongyang]的文章
必应学术
必应学术中相似的文章
[Fan, Chao]的文章
[Ma, Jingzhe]的文章
[Jin, Dongyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。