题名 | SkeletonGait: Gait Recognition Using Skeleton Maps |
作者 | |
通讯作者 | Yu, Shiqi |
DOI | |
发表日期 | 2024-03-25
|
会议名称 | 38th AAAI Conference on Artificial Intelligence, AAAI 2024
|
ISSN | 2159-5399
|
EISSN | 2374-3468
|
ISBN | 9781577358879
|
会议录名称 | |
卷号 | 38
|
页码 | 1662-1669
|
会议日期 | February 20, 2024 - February 27, 2024
|
会议地点 | Vancouver, BC, Canada
|
会议录编者/会议主办者 | Association for the Advancement of Artificial Intelligence
|
出版地 | 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
|
出版者 | |
摘要 | The choice of the representations is essential for deep gait recognition methods. The binary silhouettes and skeletal coordinates are two dominant representations in recent literature, achieving remarkable advances in many scenarios. However, inherent challenges remain, in which silhouettes are not always guaranteed in unconstrained scenes, and structural cues have not been fully utilized from skeletons. In this paper, we introduce a novel skeletal gait representation named skeleton map, together with SkeletonGait, a skeleton-based method to exploit structural information from human skeleton maps. Specifically, the skeleton map represents the coordinates of human joints as a heatmap with Gaussian approximation, exhibiting a silhouette-like image devoid of exact body structure. Beyond achieving state-of-the-art performances over five popular gait datasets, more importantly, SkeletonGait uncovers novel insights about how important structural features are in describing gait and when they play a role. Furthermore, we propose a multi-branch architecture, named SkeletonGait++, to make use of complementary features from both skeletons and silhouettes. Experiments indicate that SkeletonGait++ outperforms existing state-of-the-art methods by a significant margin in various scenarios. For instance, it achieves an impressive rank-1 accuracy of over 85% on the challenging GREW dataset. The source code is available at https://github.com/ShiqiYu/OpenGait. © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | This work was supported by the National Natural Science Foundation of China under Grant 61976144 and the Shenzhen International Research Cooperation Project under Grant GJHZ20220913142611021.
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:001239880400110
|
EI入藏号 | 20241515863957
|
EI主题词 | Artificial intelligence
; Gait analysis
; Pattern recognition
|
EI分类号 | Biomechanics, Bionics and Biomimetics:461.3
; Artificial Intelligence:723.4
|
来源库 | EV Compendex
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/794521 |
专题 | 工学院_计算机科学与工程系 南方科技大学 |
作者单位 | 1.Research Institute of Trustworthy Autonomous System, Southern University of Science and Technology, China 2.Department of Computer Science and Engineering, Southern University of Science and Technology, China 3.The University of Hong Kong, Hong Kong |
第一作者单位 | 南方科技大学; 计算机科学与工程系 |
通讯作者单位 | 南方科技大学; 计算机科学与工程系 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Fan, Chao,Ma, Jingzhe,Jin, Dongyang,et al. SkeletonGait: Gait Recognition Using Skeleton Maps[C]//Association for the Advancement of Artificial Intelligence. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:Association for the Advancement of Artificial Intelligence,2024:1662-1669.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论