中文版 | English
题名

Scale Optimization Using Evolutionary Reinforcement Learning for Object Detection on Drone Imagery

作者
通讯作者Ren, Jianfeng
DOI
发表日期
2024-03-25
会议名称
38th AAAI Conference on Artificial Intelligence, AAAI 2024
ISSN
2159-5399
EISSN
2374-3468
ISBN
9781577358879
会议录名称
卷号
38
页码
410-418
会议日期
February 20, 2024 - February 27, 2024
会议地点
Vancouver, BC, Canada
会议录编者/会议主办者
Association for the Advancement of Artificial Intelligence
出版地
2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
出版者
摘要
Object detection in aerial imagery presents a significant challenge due to large scale variations among objects. This paper proposes an evolutionary reinforcement learning agent, integrated within a coarse-to-fine object detection framework, to optimize the scale for more effective detection of objects in such images. Specifically, a set of patches potentially containing objects are first generated. A set of rewards measuring the localization accuracy, the accuracy of predicted labels, and the scale consistency among nearby patches are designed in the agent to guide the scale optimization. The proposed scale-consistency reward ensures similar scales for neighboring objects of the same category. Furthermore, a spatial-semantic attention mechanism is designed to exploit the spatial semantic relations between patches. The agent employs the proximal policy optimization strategy in conjunction with the evolutionary strategy, effectively utilizing both the current patch status and historical experience embedded in the agent. The proposed model is compared with state-of-the-art methods on two benchmark datasets for object detection on drone imagery. It significantly outperforms all the compared methods. Code is available at https://github.com/UNNC-CV/EvOD/.
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
This work was supported in part by the National Natural Science Foundation of China under Grant 72071116 and 61976037, in part by the Ningbo Municipal Bureau of Science and Technology under Grant 2019B10026, 2021Z089 and 2022Z173, in part by the Yongjiang Technology Innovation Project under Grant 2022A-097-G, and in part by the Ningbo 2025 Key R&D Project under Grant 2023Z223.
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods
WOS记录号
WOS:001239876300047
EI入藏号
20241515854032
EI主题词
Aerial photography ; Aircraft detection ; Antennas ; Drones ; Evolutionary algorithms ; Object recognition ; Reinforcement learning ; Semantics
EI分类号
Aircraft, General:652.1 ; Radar Systems and Equipment:716.2 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Photography:742.1
来源库
EV Compendex
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794523
专题工学院_计算机科学与工程系
南方科技大学
作者单位
1.The Digital Port Technologies Lab, School of Computer Science, University of Nottingham, Ningbo, China
2.Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, China
3.Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham, Ningbo, China
4.Department of Computer Science and Engineering, Southern University of Science and Technology, China
推荐引用方式
GB/T 7714
Zhang, Jialu,Yang, Xiaoying,He, Wentao,et al. Scale Optimization Using Evolutionary Reinforcement Learning for Object Detection on Drone Imagery[C]//Association for the Advancement of Artificial Intelligence. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:Association for the Advancement of Artificial Intelligence,2024:410-418.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Jialu]的文章
[Yang, Xiaoying]的文章
[He, Wentao]的文章
百度学术
百度学术中相似的文章
[Zhang, Jialu]的文章
[Yang, Xiaoying]的文章
[He, Wentao]的文章
必应学术
必应学术中相似的文章
[Zhang, Jialu]的文章
[Yang, Xiaoying]的文章
[He, Wentao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。