中文版 | English
题名

Unsupervised Continual Anomaly Detection with Contrastively-Learned Prompt

作者
通讯作者Zheng, Feng
DOI
发表日期
2024-03-25
会议名称
38th AAAI Conference on Artificial Intelligence, AAAI 2024
ISSN
2159-5399
EISSN
2374-3468
ISBN
9781577358879
会议录名称
卷号
38
页码
3639-3647
会议日期
February 20, 2024 - February 27, 2024
会议地点
Vancouver, BC, Canada
会议录编者/会议主办者
Association for the Advancement of Artificial Intelligence
出版地
2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
出版者
摘要
Unsupervised Anomaly Detection (UAD) with incremental training is crucial in industrial manufacturing, as unpredictable defects make obtaining sufficient labeled data infeasible. However, continual learning methods primarily rely on supervised annotations, while the application in UAD is limited due to the absence of supervision. Current UAD methods train separate models for different classes sequentially, leading to catastrophic forgetting and a heavy computational burden. To address this issue, we introduce a novel Unsupervised Continual Anomaly Detection framework called UCAD, which equips the UAD with continual learning capability through contrastively-learned prompts. In the proposed UCAD, we design a Continual Prompting Module (CPM) by utilizing a concise key-prompt-knowledge memory bank to guide task-invariant ‘anomaly’ model predictions using task-specific ‘normal’ knowledge. Moreover, Structure-based Contrastive Learning (SCL) is designed with the Segment Anything Model (SAM) to improve prompt learning and anomaly segmentation results. Specifically, by treating SAM’s masks as structure, we draw features within the same mask closer and push others apart for general feature representations. We conduct comprehensive experiments and set the benchmark on unsupervised continual anomaly detection and segmentation, demonstrating that our method is significantly better than anomaly detection methods, even with rehearsal training. The code will be available at https://github.com/shirowalker/UCAD.
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
This work is supported by the National Key R&D Program of China (Grant NO. 2022YFF1202903) and the National Natural Science Foundation of China (Grant NO. 62122035).
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001239884400085
EI入藏号
20241515867452
EI主题词
Artificial intelligence ; Defects ; Learning systems
EI分类号
Artificial Intelligence:723.4 ; Materials Science:951
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794524
专题南方科技大学
作者单位
1.Southern University of Science and Technology, China
2.Tencent Youtu Lab, China
3.Shanghai Jiao Tong University, China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Liu, Jiaqi,Wu, Kai,Nie, Qiang,et al. Unsupervised Continual Anomaly Detection with Contrastively-Learned Prompt[C]//Association for the Advancement of Artificial Intelligence. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:Association for the Advancement of Artificial Intelligence,2024:3639-3647.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Jiaqi]的文章
[Wu, Kai]的文章
[Nie, Qiang]的文章
百度学术
百度学术中相似的文章
[Liu, Jiaqi]的文章
[Wu, Kai]的文章
[Nie, Qiang]的文章
必应学术
必应学术中相似的文章
[Liu, Jiaqi]的文章
[Wu, Kai]的文章
[Nie, Qiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。