中文版 | English
题名

Fractional Deep Reinforcement Learning for Age-Minimal Mobile Edge Computing

作者
通讯作者Zhang, Meng
DOI
发表日期
2024-03-25
会议名称
38th AAAI Conference on Artificial Intelligence, AAAI 2024
ISSN
2159-5399
EISSN
2374-3468
ISBN
9781577358879
会议录名称
卷号
38
页码
12947-12955
会议日期
February 20, 2024 - February 27, 2024
会议地点
Vancouver, BC, Canada
会议录编者/会议主办者
Association for the Advancement of Artificial Intelligence
出版者
摘要
Mobile edge computing (MEC) is a promising paradigm for real-time applications with intensive computational needs (e.g., autonomous driving), as it can reduce the processing delay. In this work, we focus on the timeliness of computational-intensive updates, measured by Age-of-Information (AoI), and study how to jointly optimize the task updating and offloading policies for AoI with fractional form. Specifically, we consider edge load dynamics and formulate a task scheduling problem to minimize the expected time-average AoI. The uncertain edge load dynamics, the nature of the fractional objective, and hybrid continuous-discrete action space (due to the joint optimization) make this problem challenging and existing approaches not directly applicable. To this end, we propose a fractional reinforcement learning (RL) framework and prove its convergence. We further design a model-free fractional deep RL (DRL) algorithm, where each device makes scheduling decisions with the hybrid action space without knowing the system dynamics and decisions of other devices. Experimental results show that our proposed algorithms reduce the average AoI by up to 57.6% compared with several non-fractional benchmarks.
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
学校署名
其他
语种
英语
收录类别
资助项目
This work was supported in part by the National Natural Science Foundation of China (Projects 62202427 and 62202214), in part by Guangdong Basic and Applied Basic Research Foundation under Grant 2023A1515012819, and in part by the Australian Research Council (ARC) Discovery Early Career Researcher Award (DECRA) under Grant DE230100046.
EI入藏号
20241515882200
EI主题词
Computation offloading ; Deep learning ; Mobile edge computing
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Digital Computers and Systems:722.4 ; Computer Software, Data Handling and Applications:723 ; Artificial Intelligence:723.4
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794525
专题南方科技大学
作者单位
1.Zhejiang University, Zhejiang, Haining, China
2.Southern University of Science and Technology, Guangdong, Shenzhen, China
3.Monash University, Melbourne; VIC, Australia
推荐引用方式
GB/T 7714
Jin, Lyudong,Tang, Ming,Zhang, Meng,et al. Fractional Deep Reinforcement Learning for Age-Minimal Mobile Edge Computing[C]//Association for the Advancement of Artificial Intelligence:Association for the Advancement of Artificial Intelligence,2024:12947-12955.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jin, Lyudong]的文章
[Tang, Ming]的文章
[Zhang, Meng]的文章
百度学术
百度学术中相似的文章
[Jin, Lyudong]的文章
[Tang, Ming]的文章
[Zhang, Meng]的文章
必应学术
必应学术中相似的文章
[Jin, Lyudong]的文章
[Tang, Ming]的文章
[Zhang, Meng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。