中文版 | English
题名

UAV Farmland Object Tracking Based on Improved QDTrack

作者
通讯作者Wang, Dashuai
DOI
发表日期
2024-02-02
会议名称
16th International Conference on Machine Learning and Computing, ICMLC 2024
ISBN
9798400709234
会议录名称
页码
398-403
会议日期
February 2, 2024 - February 5, 2024
会议地点
Shenzhen, China
出版者
摘要
In order to further improve the environmental perception capabilities of ultra-low-altitude agricultural drones, an improved multi-objective tracking method based on QDTrack(Quasi-Dense Track) is proposed. We first constructed a video dataset containing typical farmland objects for model training and testing. To improve the detection performance of QDTrack, we used the Mask R-CNN instead of Faster R-CNN as the detection model. The result showed that the MOTA and MOTP value of Mask-QDTrack was 1.5 and 0.3 percentage points higher than the original QDTrack. Expecially, the IDF1 has increased from 20.5% to 41.8%, an improvement of 21.3 percentage points. To address the issue of information transmission between different frames, spatial attention was introduced into the detection network(Mask R-CNN) to focus on the significant apparent features of the tracking target and suppress the influence of useless features such as noise. In addition, deformable convolution was introduced to add the offset, increase the receptive field and improve the robustness of the model. The results showed that the improved-Mask-QDTrack achieved the best MOTA of 63.4%, MOTP of 81.1% and IDF1 of 54%, which was 14.2, 3.3 and 33.5 percentage points higher than the original QDTrack, respectively. And the IDSW of improved-Mask-QDTrack was 8 lower than the original QDTrack. The improved QDTrack multi-object tracking model proposed in this paper can provide technical support for the safe and autonomous flight of UAV.
© 2024 ACM.
学校署名
第一 ; 通讯
语种
英语
收录类别
资助项目
This work was supported in part by the Shenzhen Science and Technology Program (Grant No. JCYJ20210324102401005, JCYJ20220818100408018) and the National Natural Science Foundation of China (Grant No. 32001424, 32371992).
EI入藏号
20242516284062
EI主题词
Aircraft detection ; Drones ; Farms ; Statistical tests
EI分类号
Aircraft, General:652.1 ; Information Theory and Signal Processing:716.1 ; Radar Systems and Equipment:716.2 ; Agricultural Equipment and Methods; Vegetation and Pest Control:821 ; Mathematical Statistics:922.2
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794533
专题南方科技大学
作者单位
1.Southern University Of Science And Technology, Guangdong, Shenzhen, China
2.Shenzhen Institute Of Advanced Technology, Chinese Academy Of Sciences, Guangdong, Shenzhen, China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Li, Zhuolin,Yu, Xiaoting,Wang, Dashuai,et al. UAV Farmland Object Tracking Based on Improved QDTrack[C]:Association for Computing Machinery,2024:398-403.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Zhuolin]的文章
[Yu, Xiaoting]的文章
[Wang, Dashuai]的文章
百度学术
百度学术中相似的文章
[Li, Zhuolin]的文章
[Yu, Xiaoting]的文章
[Wang, Dashuai]的文章
必应学术
必应学术中相似的文章
[Li, Zhuolin]的文章
[Yu, Xiaoting]的文章
[Wang, Dashuai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。