题名 | A Concept-Based Local Interpretable Model-Agnostic Explanation Approach for Deep Neural Networks in Image Classification |
作者 | |
通讯作者 | Huang, Changwu |
DOI | |
发表日期 | 2024
|
会议名称 | 13th IFIP TC 12 International Conference on Intelligent Information Processing, IIP 2024
|
ISSN | 1868-4238
|
EISSN | 1868-422X
|
ISBN | 9783031579189
|
会议录名称 | |
卷号 | 704 IFIPAICT
|
页码 | 119-133
|
会议日期 | May 3, 2024 - May 6, 2024
|
会议地点 | Shenzhen, China
|
出版者 | |
摘要 | A well-recognized and widely-used explainable artificial intelligence (XAI) method is Local Interpretable Model-agnostic Explanations (LIME), which offers instance-level interpretation by generating new data around the instance and training a locally interpretable linear model. However, when using LIME to explain the image classification model, it generates interpretations at the level of super-pixel representation. This does not assure comprehensibility to humans due to the lack of semantic information in super-pixels. To enhance the intelligibility of LIME, we propose an advanced version of LIME, termed Concept-based Local Interpretable Model-agnostic Explanations (ConceptLIME). In ConceptLIME, the explanations are formulated in terms of human-understandable concepts as opposed to the semantically deficient super-pixels, thereby augmenting the comprehensibility of the original LIME method. Comparative experiments have been conducted between ConceptLIME and LIME to validate the effectiveness of ConceptLIME. The experimental results indicate that ConceptLIME outperforms LIME regarding predictive performance on both the perturbation dataset and the explained instances. Moreover, the fidelity of the explanations generated by ConceptLIME surpasses that produced by LIME. The interpretations provided by ConceptLIME are more intelligible and intuitive than LIME’s explanations. Consequently, our proposed ConceptLIME exhibits superior properties, including predictive performance, fidelity, and comprehensibility, when compared with LIME. © IFIP International Federation for Information Processing 2024. |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
收录类别 | |
资助项目 | This work was supported by the National Natural Science Foundation of China (Grant No. 62250710682), the Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No. 2017ZT07X386), and the Research Institute of Trustworthy Autonomous Systems.
|
EI入藏号 | 20241715961461
|
EI主题词 | Image classification
; Lime
; Pixels
; Semantics
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Data Processing and Image Processing:723.2
; Inorganic Compounds:804.2
|
来源库 | EV Compendex
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/794538 |
专题 | 工学院_斯发基斯可信自主研究院 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Research Institute of Trustworthy Autonomous Systems (RITAS), Southern University of Science and Technology, Shenzhen; 518055, China 2.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China |
第一作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
通讯作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院 |
推荐引用方式 GB/T 7714 |
Tan, Lidan,Huang, Changwu,Yao, Xin. A Concept-Based Local Interpretable Model-Agnostic Explanation Approach for Deep Neural Networks in Image Classification[C]:Springer Science and Business Media Deutschland GmbH,2024:119-133.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论