中文版 | English
题名

A Concept-Based Local Interpretable Model-Agnostic Explanation Approach for Deep Neural Networks in Image Classification

作者
通讯作者Huang, Changwu
DOI
发表日期
2024
会议名称
13th IFIP TC 12 International Conference on Intelligent Information Processing, IIP 2024
ISSN
1868-4238
EISSN
1868-422X
ISBN
9783031579189
会议录名称
卷号
704 IFIPAICT
页码
119-133
会议日期
May 3, 2024 - May 6, 2024
会议地点
Shenzhen, China
出版者
摘要
A well-recognized and widely-used explainable artificial intelligence (XAI) method is Local Interpretable Model-agnostic Explanations (LIME), which offers instance-level interpretation by generating new data around the instance and training a locally interpretable linear model. However, when using LIME to explain the image classification model, it generates interpretations at the level of super-pixel representation. This does not assure comprehensibility to humans due to the lack of semantic information in super-pixels. To enhance the intelligibility of LIME, we propose an advanced version of LIME, termed Concept-based Local Interpretable Model-agnostic Explanations (ConceptLIME). In ConceptLIME, the explanations are formulated in terms of human-understandable concepts as opposed to the semantically deficient super-pixels, thereby augmenting the comprehensibility of the original LIME method. Comparative experiments have been conducted between ConceptLIME and LIME to validate the effectiveness of ConceptLIME. The experimental results indicate that ConceptLIME outperforms LIME regarding predictive performance on both the perturbation dataset and the explained instances. Moreover, the fidelity of the explanations generated by ConceptLIME surpasses that produced by LIME. The interpretations provided by ConceptLIME are more intelligible and intuitive than LIME’s explanations. Consequently, our proposed ConceptLIME exhibits superior properties, including predictive performance, fidelity, and comprehensibility, when compared with LIME.
© IFIP International Federation for Information Processing 2024.
学校署名
第一 ; 通讯
语种
英语
收录类别
资助项目
This work was supported by the National Natural Science Foundation of China (Grant No. 62250710682), the Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No. 2017ZT07X386), and the Research Institute of Trustworthy Autonomous Systems.
EI入藏号
20241715961461
EI主题词
Image classification ; Lime ; Pixels ; Semantics
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2 ; Inorganic Compounds:804.2
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794538
专题工学院_斯发基斯可信自主研究院
南方科技大学
工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous Systems (RITAS), Southern University of Science and Technology, Shenzhen; 518055, China
2.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
通讯作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Tan, Lidan,Huang, Changwu,Yao, Xin. A Concept-Based Local Interpretable Model-Agnostic Explanation Approach for Deep Neural Networks in Image Classification[C]:Springer Science and Business Media Deutschland GmbH,2024:119-133.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tan, Lidan]的文章
[Huang, Changwu]的文章
[Yao, Xin]的文章
百度学术
百度学术中相似的文章
[Tan, Lidan]的文章
[Huang, Changwu]的文章
[Yao, Xin]的文章
必应学术
必应学术中相似的文章
[Tan, Lidan]的文章
[Huang, Changwu]的文章
[Yao, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。