中文版 | English
题名

Divide-and-Conquer Strategy for Large-Scale Dynamic Bayesian Network Structure Learning

作者
通讯作者Chen, Cheng
DOI
发表日期
2024
会议名称
13th IFIP TC 12 International Conference on Intelligent Information Processing, IIP 2024
ISSN
1868-4238
EISSN
1868-422X
ISBN
9783031578076
会议录名称
卷号
703 IFIPAICT
页码
63-78
会议日期
May 3, 2024 - May 6, 2024
会议地点
Shenzhen, China
出版者
摘要
Dynamic Bayesian Networks (DBNs), renowned for their interpretability, have become increasingly vital in representing complex stochastic processes in various domains such as gene expression analysis, healthcare, and traffic prediction. Structure learning of DBNs from data is a challenging endeavor, particularly for datasets with thousands of variables. Most current algorithms for DBN structure learning are adaptations from those used in static Bayesian Networks (BNs), and are typically focused on smaller-scale problems. In order to solve large-scale problems while taking full advantage of existing algorithms, this paper introduces a novel divide-and-conquer strategy, originally developed for static BNs, and adapts it for large-scale DBN structure learning. Additionally, we leverage the prior knowledge of 2 Time-sliced BNs (2-TBNs), a special class of DBNs, to enhance the performance of this strategy. Our approach significantly improves the scalability and accuracy of 2-TBN structure learning. Designed experiments demonstrate the effectiveness of our method, showing substantial improvements over existing algorithms in both computational efficiency and structure learning accuracy. In problem instances with more than 1,000 variables, our proposed approach on average improves two accuracy metrics by 74.45% and 110.94%, respectively, while reducing runtime by an average of 93.65%. Moreover, in problem instances with more than 10,000 variables, our proposed approach successfully completed the task in a matter of hours, whereas the baseline algorithm failed to produce a reasonable result within a one-day runtime limit.
© IFIP International Federation for Information Processing 2024.
学校署名
第一 ; 通讯
语种
英语
收录类别
EI入藏号
20241715951355
EI主题词
Big data ; Computational efficiency ; Data mining ; Gene expression ; Knowledge representation ; Learning algorithms ; Learning systems ; Machine learning ; Random processes ; Stochastic systems
EI分类号
Biology:461.9 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Machine Learning:723.4.2 ; Control Systems:731.1 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Probability Theory:922.1 ; Systems Science:961
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794540
专题工学院_计算机科学与工程系
南方科技大学
工学院_斯发基斯可信自主研究院
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China
2.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen; 518055, China
第一作者单位计算机科学与工程系
通讯作者单位斯发基斯可信自主系统研究院
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Ouyang, Hui,Chen, Cheng,Tang, Ke. Divide-and-Conquer Strategy for Large-Scale Dynamic Bayesian Network Structure Learning[C]:Springer Science and Business Media Deutschland GmbH,2024:63-78.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ouyang, Hui]的文章
[Chen, Cheng]的文章
[Tang, Ke]的文章
百度学术
百度学术中相似的文章
[Ouyang, Hui]的文章
[Chen, Cheng]的文章
[Tang, Ke]的文章
必应学术
必应学术中相似的文章
[Ouyang, Hui]的文章
[Chen, Cheng]的文章
[Tang, Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。