中文版 | English
题名

An Adaptive Knowledge Transfer Strategy for Evolutionary Dynamic Multi-objective Optimization

作者
通讯作者Lu, Xiaofen
DOI
发表日期
2024
会议名称
18th International Conference on Bio-Inspired Computing: Theories and Applications, BIC-TA 2023
ISSN
1865-0929
EISSN
1865-0937
ISBN
9789819722716
会议录名称
卷号
2061 CCIS
页码
185-199
会议日期
December 15, 2023 - December 17, 2023
会议地点
Changsha, China
出版者
摘要
Dynamic multi-objective optimization problems (DMOPs) are optimization problems involve multiple conflicting objectives, and these objectives change over time. The challenge in solving DMOPs is how to quickly track the Pareto optimal solution set when the environment changes. Recently, dynamic multi-objective evolutionary algorithms (DMOEAs) combined with transfer learning (TL) have been proven to be promising in solving DMOPs. TL-based DMOEAs showed advantages in reusing historical information and predicting high-quality solutions in the new environment. Various TL techniques have been employed to DMOEAs, which learn and transfer knowledge either in decision space or in objective space to predict the Pareto optimal solutions. However, problems usually have different types of change in decision and objective spaces. A single knowledge learning and transfer strategy may be unsuitable for all types of DMOPs. In this paper, a DMOEA with an adaptive knowledge learning and transfer strategy is proposed to solve DMOPs. It first estimates the change type of the problem when the environment changes, i.e., whether there exists change in decision or objective spaces, and then based on the change type, it adaptively chooses to learn and transfer knowledge in the decision space or objective space or both to generate an initial population that guides the search in new environment. A comprehensive empirical study is conducted to evaluate the performance of the proposed method. The method is compared to six state-of-the-art prediction-based DMOEAs on widely used DMOP benchmarks. Experimental results demonstrate that the proposed method outperforms or achieves comparable results to the compared algorithms on most of the test problems.
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
学校署名
第一 ; 通讯
语种
英语
收录类别
资助项目
This work was supported by the National Natural Science Foundation of China (Grant No. 61906082), Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), the Research Institute of Trustworthy Autonomous Systems (RITAS).
EI入藏号
20241916066446
EI主题词
Forecasting ; Knowledge management ; Learning algorithms ; Multiobjective optimization ; Optimal systems ; Pareto principle
EI分类号
Machine Learning:723.4.2 ; Computer Applications:723.5 ; Information Retrieval and Use:903.3 ; Optimization Techniques:921.5 ; Systems Science:961
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794546
专题工学院_计算机科学与工程系
南方科技大学
工学院_斯发基斯可信自主研究院
作者单位
1.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China
2.The Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen; 518055, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhao, Donghui,Lu, Xiaofen,Tang, Ke. An Adaptive Knowledge Transfer Strategy for Evolutionary Dynamic Multi-objective Optimization[C]:Springer Science and Business Media Deutschland GmbH,2024:185-199.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhao, Donghui]的文章
[Lu, Xiaofen]的文章
[Tang, Ke]的文章
百度学术
百度学术中相似的文章
[Zhao, Donghui]的文章
[Lu, Xiaofen]的文章
[Tang, Ke]的文章
必应学术
必应学术中相似的文章
[Zhao, Donghui]的文章
[Lu, Xiaofen]的文章
[Tang, Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。