题名 | Rolling Horizon Co-evolution for Snake AI Competition |
作者 | |
通讯作者 | Zhang, Qingquan |
DOI | |
发表日期 | 2024
|
会议名称 | 13th IFIP TC 12 International Conference on Intelligent Information Processing, IIP 2024
|
ISSN | 1868-4238
|
EISSN | 1868-422X
|
ISBN | 9783031578076
|
会议录名称 | |
卷号 | 703 IFIPAICT
|
页码 | 260-274
|
会议日期 | May 3, 2024 - May 6, 2024
|
会议地点 | Shenzhen, China
|
出版者 | |
摘要 | The Snake game, a classic in the gaming world, gains new dimensions with the Snake AI competition, where two players controlled by AI algorithms can now compete simultaneously in the same game session. This competition holds significance in advancing our understanding of artificial intelligence (AI) algorithms. In the 2020 and 2021 Snake AI competitions, popular algorithms, using graph-based search or heuristic strategies, demonstrate competitive performance, such as the A* algorithm, Monte Carlo Tree Search (MCTS). Contrary to these heuristic approaches, the Rolling Horizon Co-evolution Algorithm (RHCA), characterised by its core principles of rolling horizon evaluation and co-evolution, maintains two populations, one for each player, to co-evolve with each other without reliance on heuristics. RHCA has been verified its effectiveness in a two-player spaceship game. In this paper, we extend the RHCA application to the two-player Snake AI game, comparing it with other state-of-the-art methods. Additionally, we introduce various obstacles to create different complex scenarios, ensuring a comprehensive analysis. Experimental results reveal RHCA’s superior and stable performance, especially in resource-constrained and complex scenarios. Furthermore, an analysis of RHCA’s behaviours across maps with diverse obstacle scenarios highlights its ability to make intelligent decisions in competing with state-of-the-art methods. © IFIP International Federation for Information Processing 2024. |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
收录类别 | |
资助项目 | This work was supported by the National Key R&D Program of China (Grant No. 2023YFE0106300), the National Natural Science Foundation of China (Grant No. 62250710682), the Shenzhen Science and Technology Program (Grant No. 20220815181327001), the Research Institute of Trustworthy Autonomous Systems and the Guangdong Provincial Key Laboratory (Grant No. 2020B121201001).
|
EI入藏号 | 20241715951369
|
EI主题词 | Artificial intelligence
; Evolutionary algorithms
; Graphic methods
; Heuristic algorithms
; Heuristic methods
; Human computer interaction
|
EI分类号 | Computer Programming:723.1
; Artificial Intelligence:723.4
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
来源库 | EV Compendex
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/794547 |
专题 | 工学院_计算机科学与工程系 南方科技大学 |
作者单位 | 1.Research Institute of Trustworthy Autonomous System, Southern University of Science and Technology, Shenzhen; 518055, China 2.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China |
第一作者单位 | 南方科技大学; 计算机科学与工程系 |
通讯作者单位 | 南方科技大学; 计算机科学与工程系 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Li, Hui,Zhou, Jiayi,Zhang, Qingquan. Rolling Horizon Co-evolution for Snake AI Competition[C]:Springer Science and Business Media Deutschland GmbH,2024:260-274.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论