中文版 | English
题名

Online Learning in Varying Feature Spaces with Informative Variation

作者
通讯作者Song, Liyan
DOI
发表日期
2024
会议名称
13th IFIP TC 12 International Conference on Intelligent Information Processing, IIP 2024
ISSN
1868-4238
EISSN
1868-422X
ISBN
9783031578076
会议录名称
卷号
703 IFIPAICT
页码
19-33
会议日期
May 3, 2024 - May 6, 2024
会议地点
Shenzhen, China
出版者
摘要
Most conventional literature on online learning implicitly assumes a static feature space. However, in real-world applications, the feature space may vary over time due to the emergence of new features and the vanishing of outdated features. This phenomenon is referred to as online learning with Varying Feature Space (VFS). Recently, there has been increasing attention towards exploring this online learning paradigm. However, none of the existing approaches have taken into account the potentially informative information conveyed by the presence or absence (i.e., variation in this paper) of each feature. This indicates that the existence of certain features in the VFS can be correlated with the class labels. If properly utilized for the learning process, such information can potentially enhance predictive performance. To this end, we formally define and present a learning framework to address this specific learning scenario, which we refer to as Online learning in Varying Feature space with Informative Variation (abbreviated as OVFIV). The framework aims to answer two key questions: how to learn a model that captures the association between the existence of features and the class labels, and how to incorporate this information into the prediction process to improve performance. The validity of our proposed method is verified through theoretical analyses and empirical studies conducted on 17 datasets from diverse fields.
© IFIP International Federation for Information Processing 2024.
学校署名
第一 ; 通讯
语种
英语
收录类别
资助项目
This work was supported by National Natural Science Foundation of China (NSFC) under Grant Nos. 62002148 and 62250710682, Guangdong Provincial Key Laboratory under Grant No. 2020B121201001, and Research Institute of Trustworthy Autonomous Systems (RITAS).
EI入藏号
20241715951352
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794552
专题南方科技大学
作者单位
1.Southern University of Science and Technology, Shenzhen, China
2.Faculty of Computing, Harbin Institute of Technology, Harbin, China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Qin, Peijia,Song, Liyan. Online Learning in Varying Feature Spaces with Informative Variation[C]:Springer Science and Business Media Deutschland GmbH,2024:19-33.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qin, Peijia]的文章
[Song, Liyan]的文章
百度学术
百度学术中相似的文章
[Qin, Peijia]的文章
[Song, Liyan]的文章
必应学术
必应学术中相似的文章
[Qin, Peijia]的文章
[Song, Liyan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。