题名 | Online Learning in Varying Feature Spaces with Informative Variation |
作者 | |
通讯作者 | Song, Liyan |
DOI | |
发表日期 | 2024
|
会议名称 | 13th IFIP TC 12 International Conference on Intelligent Information Processing, IIP 2024
|
ISSN | 1868-4238
|
EISSN | 1868-422X
|
ISBN | 9783031578076
|
会议录名称 | |
卷号 | 703 IFIPAICT
|
页码 | 19-33
|
会议日期 | May 3, 2024 - May 6, 2024
|
会议地点 | Shenzhen, China
|
出版者 | |
摘要 | Most conventional literature on online learning implicitly assumes a static feature space. However, in real-world applications, the feature space may vary over time due to the emergence of new features and the vanishing of outdated features. This phenomenon is referred to as online learning with Varying Feature Space (VFS). Recently, there has been increasing attention towards exploring this online learning paradigm. However, none of the existing approaches have taken into account the potentially informative information conveyed by the presence or absence (i.e., variation in this paper) of each feature. This indicates that the existence of certain features in the VFS can be correlated with the class labels. If properly utilized for the learning process, such information can potentially enhance predictive performance. To this end, we formally define and present a learning framework to address this specific learning scenario, which we refer to as Online learning in Varying Feature space with Informative Variation (abbreviated as OVFIV). The framework aims to answer two key questions: how to learn a model that captures the association between the existence of features and the class labels, and how to incorporate this information into the prediction process to improve performance. The validity of our proposed method is verified through theoretical analyses and empirical studies conducted on 17 datasets from diverse fields. © IFIP International Federation for Information Processing 2024. |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
收录类别 | |
资助项目 | This work was supported by National Natural Science Foundation of China (NSFC) under Grant Nos. 62002148 and 62250710682, Guangdong Provincial Key Laboratory under Grant No. 2020B121201001, and Research Institute of Trustworthy Autonomous Systems (RITAS).
|
EI入藏号 | 20241715951352
|
来源库 | EV Compendex
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/794552 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology, Shenzhen, China 2.Faculty of Computing, Harbin Institute of Technology, Harbin, China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Qin, Peijia,Song, Liyan. Online Learning in Varying Feature Spaces with Informative Variation[C]:Springer Science and Business Media Deutschland GmbH,2024:19-33.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论