中文版 | English
题名

Human-In-The-Loop Based Success Rate Prediction for Medical Crowdfunding

作者
通讯作者Ma, Yongqiang
DOI
发表日期
2024
会议名称
20th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2024
ISSN
1868-4238
EISSN
1868-422X
ISBN
9783031632105
会议录名称
卷号
711
页码
91-104
会议日期
June 27, 2024 - June 30, 2024
会议地点
Corfu, Greece
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Medical crowdfunding serves as a pivotal means of donor-driven funding to assist individuals unable to afford medical expenses. However, challenges such as a low success rate and suboptimal fundraising performances have garnered significant attention from medical crowdfunding platforms. This study employs a comprehensive framework combining neural network and tree models, augmented by Human-In-The-Loop (HITL), to predict the success rates of medical crowdfunding campaigns and identify the crucial determinants of fundraising effectiveness. Our approach enhances model interpretability, offering insights into the prediction and inference processes, and incorporates human feedback at various stages of model training and testing. We apply the method to a structured dataset from a leading medical crowdfunding platform. The findings indicate that our method achieves accuracy of 94.9%, AUC value of 98.2%, recall rate of 86.4%, and F1 score of 89.2% on the binary classification task. Further analysis reveals the primary factors influencing crowdfunding success to be the target amount and the duration of the fundraising campaign. These results prove the efficacy of incorporating HITL into the model development process, markedly enhancing performance and facilitating a deeper understanding of both the dataset and model predictions.
© IFIP International Federation for Information Processing 2024.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
This work was supported by the National Natural Science Foundation of China (NO. 62088102) and STI2030-Major Projects (NO. 2021ZD0113604). The authors would like to acknowledge the partial grant support to the research (Grant ID: 72061127002, 2018wzdxm020). This research is also supported by DeFin research center of National Center for Applied Mathematics Shenzhen, Shenzhen Key Research Base in Arts & Social Sciences (Intelligent Management & Innovation Research Center, SUSTech, Shenzhen).
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Biomedical
WOS记录号
WOS:001283387400008
EI入藏号
20242716603496
EI主题词
Crowdsourcing
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794558
专题理学院_深圳国家应用数学中心
商学院
作者单位
1.National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center of Visual Information and Applications, Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Shaanxi, Xi’an; 710049, China
2.National Center for Applied Mathematics Shenzhen, College of Business, Southern University of Science and Technology, Shenzhen; 518055, China
推荐引用方式
GB/T 7714
Zhou, Yingying,Ma, Yongqiang,Tang, Xin,et al. Human-In-The-Loop Based Success Rate Prediction for Medical Crowdfunding[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2024:91-104.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhou, Yingying]的文章
[Ma, Yongqiang]的文章
[Tang, Xin]的文章
百度学术
百度学术中相似的文章
[Zhou, Yingying]的文章
[Ma, Yongqiang]的文章
[Tang, Xin]的文章
必应学术
必应学术中相似的文章
[Zhou, Yingying]的文章
[Ma, Yongqiang]的文章
[Tang, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。