中文版 | English
题名

Multi-model traffic accident clearance time prediction framework

作者
通讯作者Yin, Jiyao; Yang, Lili
DOI
发表日期
2024
会议名称
4th International Conference on Smart City Engineering and Public Transportation, SCEPT 2024
ISSN
0277-786X
EISSN
1996-756X
ISBN
9781510679818
会议录名称
卷号
13160
会议日期
January 26, 2024 - January 28, 2024
会议地点
Beijing, China
会议录编者/会议主办者
Academic Exchange Information Centre (AEIC)
出版者
摘要
Accurate traffic accident clearance times prediction can help road managers make effective decisions and reduce property damage. This paper aims to develop a framework for traffic accident clearance time prediction and find the best prediction model. We propose a multi-model prediction framework for traffic accident severity. This framework consists of three parts: preprocessing of imbalanced data, variable selection and establishment of hybrid models: RF-SVM, RFBPNN, and RF-BN. Four highways in Shandong Province's traffic accident data are used as a case study in this paper. Based on the data used in this paper and previous literature exploration, three mixed models are constructed. Comparing the outcomes, we discover that the RF-SVM model has the highest prediction accuracy, up to 0.98, for the oversampled data set. This framework can be used to forecast the clearance time for traffic accidents, allowing for prompt emergency response and a reduction in fatalities and property damage.
© COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
学校署名
第一 ; 通讯
语种
英语
收录类别
资助项目
This research is supported in part by Shenzhen Science and Technology Program under Grant No. ZDSYS20210623092007023, JCYJ20200109141218676; Shenzhen Scientific Research Funding under Grant No. K22627501; and National Key R&D Program of China under Grant No. 2019YFC0810705.
EI入藏号
20242216163025
EI主题词
Highway accidents ; Machine learning
EI分类号
Highway Transportation, General:432.1 ; Artificial Intelligence:723.4 ; Accidents and Accident Prevention:914.1
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794559
专题理学院_统计与数据科学系
南方科技大学
作者单位
1.Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen, China
2.Shenzhen Key Laboratory of Safety and Security for Next Generation of Industrial Internet, Southern University of Science and Technology, Shenzhen, China
3.Shenzhen Urban Public Safety Technology Institute, Guangdong, Shenzhen, China
第一作者单位统计与数据科学系;  南方科技大学
通讯作者单位统计与数据科学系;  南方科技大学
第一作者的第一单位统计与数据科学系
推荐引用方式
GB/T 7714
Zhang, Anyi,Wang, Qianqian,Huang, Zhejun,et al. Multi-model traffic accident clearance time prediction framework[C]//Academic Exchange Information Centre (AEIC):SPIE,2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Anyi]的文章
[Wang, Qianqian]的文章
[Huang, Zhejun]的文章
百度学术
百度学术中相似的文章
[Zhang, Anyi]的文章
[Wang, Qianqian]的文章
[Huang, Zhejun]的文章
必应学术
必应学术中相似的文章
[Zhang, Anyi]的文章
[Wang, Qianqian]的文章
[Huang, Zhejun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。