题名 | Multi-model traffic accident clearance time prediction framework |
作者 | |
通讯作者 | Yin, Jiyao; Yang, Lili |
DOI | |
发表日期 | 2024
|
会议名称 | 4th International Conference on Smart City Engineering and Public Transportation, SCEPT 2024
|
ISSN | 0277-786X
|
EISSN | 1996-756X
|
ISBN | 9781510679818
|
会议录名称 | |
卷号 | 13160
|
会议日期 | January 26, 2024 - January 28, 2024
|
会议地点 | Beijing, China
|
会议录编者/会议主办者 | Academic Exchange Information Centre (AEIC)
|
出版者 | |
摘要 | Accurate traffic accident clearance times prediction can help road managers make effective decisions and reduce property damage. This paper aims to develop a framework for traffic accident clearance time prediction and find the best prediction model. We propose a multi-model prediction framework for traffic accident severity. This framework consists of three parts: preprocessing of imbalanced data, variable selection and establishment of hybrid models: RF-SVM, RFBPNN, and RF-BN. Four highways in Shandong Province's traffic accident data are used as a case study in this paper. Based on the data used in this paper and previous literature exploration, three mixed models are constructed. Comparing the outcomes, we discover that the RF-SVM model has the highest prediction accuracy, up to 0.98, for the oversampled data set. This framework can be used to forecast the clearance time for traffic accidents, allowing for prompt emergency response and a reduction in fatalities and property damage. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
收录类别 | |
资助项目 | This research is supported in part by Shenzhen Science and Technology Program under Grant No. ZDSYS20210623092007023, JCYJ20200109141218676; Shenzhen Scientific Research Funding under Grant No. K22627501; and National Key R&D Program of China under Grant No. 2019YFC0810705.
|
EI入藏号 | 20242216163025
|
EI主题词 | Highway accidents
; Machine learning
|
EI分类号 | Highway Transportation, General:432.1
; Artificial Intelligence:723.4
; Accidents and Accident Prevention:914.1
|
来源库 | EV Compendex
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/794559 |
专题 | 理学院_统计与数据科学系 南方科技大学 |
作者单位 | 1.Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen, China 2.Shenzhen Key Laboratory of Safety and Security for Next Generation of Industrial Internet, Southern University of Science and Technology, Shenzhen, China 3.Shenzhen Urban Public Safety Technology Institute, Guangdong, Shenzhen, China |
第一作者单位 | 统计与数据科学系; 南方科技大学 |
通讯作者单位 | 统计与数据科学系; 南方科技大学 |
第一作者的第一单位 | 统计与数据科学系 |
推荐引用方式 GB/T 7714 |
Zhang, Anyi,Wang, Qianqian,Huang, Zhejun,et al. Multi-model traffic accident clearance time prediction framework[C]//Academic Exchange Information Centre (AEIC):SPIE,2024.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论