中文版 | English
题名

A Data-Driven Framework for Whole-Brain Network Modeling with Simultaneous EEG-SEEG Data

作者
通讯作者Liu, Quanying
DOI
发表日期
2024
会议名称
13th IFIP TC 12 International Conference on Intelligent Information Processing, IIP 2024
ISSN
1868-4238
EISSN
1868-422X
ISBN
9783031578076
会议录名称
卷号
703 IFIPAICT
页码
329-342
会议日期
May 3, 2024 - May 6, 2024
会议地点
Shenzhen, China
出版者
摘要
Whole-brain network modeling (WBM) offers a pivotal tool to explore the large-scale spatiotemporal dynamics of the brain at rest, during cognitive tasks, and under external stimulation. However, it is unclear how to fuse multi-modal neural dynamics in a united WBM framework and predict the whole-brain spatiotemporal neural responses to electrical stimulation. In this study, we present a computational framework with whole-brain network modeling, parameter optimization, and model validation using simultaneous EEG-SEEG data during intracranial brain stimulation. To test the efficacy of WBM in revealing brain-wide neural dynamics, our experiments utilize synthetic electrophysiological data, real EEG data, and real EEG-SEEG signals. Experimental results demonstrate that our WBM framework accurately captures the spatiotemporal brain activities by jointly leveraging the higher spatial resolution from SEEG and the whole-brain coverage from EEG. Notably, our model shows a higher correlation between the functional connectivity (FC) matrix of EEG and that of the inferred whole-brain neural dynamics from WBM (r=0.86), compared to the FC from EEG source localization (r=0.48). Together, we demonstrate the capability and flexibility of WBM framework to uncover the whole-brain spatiotemporal neural activity and its potential to provide new insights into the input-response mechanism of the brain.
© IFIP International Federation for Information Processing 2024.
学校署名
第一 ; 通讯
语种
英语
收录类别
资助项目
This work was funded in part by the National Key R&D Program of China (2021YFF1200804), UQ-Research Training Program (UQ-RTP) Scholarship, National Natural Science Foundation of China (62001205), Shenzhen Science and Technology Innovation Committee (2022410129, KCXFZ2020122117340001).
EI入藏号
20241715951374
EI主题词
Dynamics ; Electrophysiology ; Neurons
EI分类号
Biomedical Engineering:461.1 ; Biology:461.9
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794569
专题南方科技大学
作者单位
1.Southern University of Science and Technology, Shenzhen, China
2.The University of Queensland, Brisbane, Australia
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Lou, Kexin,Li, Jingzhe,Barth, Markus,et al. A Data-Driven Framework for Whole-Brain Network Modeling with Simultaneous EEG-SEEG Data[C]:Springer Science and Business Media Deutschland GmbH,2024:329-342.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lou, Kexin]的文章
[Li, Jingzhe]的文章
[Barth, Markus]的文章
百度学术
百度学术中相似的文章
[Lou, Kexin]的文章
[Li, Jingzhe]的文章
[Barth, Markus]的文章
必应学术
必应学术中相似的文章
[Lou, Kexin]的文章
[Li, Jingzhe]的文章
[Barth, Markus]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。