题名 | A Data-Driven Framework for Whole-Brain Network Modeling with Simultaneous EEG-SEEG Data |
作者 | |
通讯作者 | Liu, Quanying |
DOI | |
发表日期 | 2024
|
会议名称 | 13th IFIP TC 12 International Conference on Intelligent Information Processing, IIP 2024
|
ISSN | 1868-4238
|
EISSN | 1868-422X
|
ISBN | 9783031578076
|
会议录名称 | |
卷号 | 703 IFIPAICT
|
页码 | 329-342
|
会议日期 | May 3, 2024 - May 6, 2024
|
会议地点 | Shenzhen, China
|
出版者 | |
摘要 | Whole-brain network modeling (WBM) offers a pivotal tool to explore the large-scale spatiotemporal dynamics of the brain at rest, during cognitive tasks, and under external stimulation. However, it is unclear how to fuse multi-modal neural dynamics in a united WBM framework and predict the whole-brain spatiotemporal neural responses to electrical stimulation. In this study, we present a computational framework with whole-brain network modeling, parameter optimization, and model validation using simultaneous EEG-SEEG data during intracranial brain stimulation. To test the efficacy of WBM in revealing brain-wide neural dynamics, our experiments utilize synthetic electrophysiological data, real EEG data, and real EEG-SEEG signals. Experimental results demonstrate that our WBM framework accurately captures the spatiotemporal brain activities by jointly leveraging the higher spatial resolution from SEEG and the whole-brain coverage from EEG. Notably, our model shows a higher correlation between the functional connectivity (FC) matrix of EEG and that of the inferred whole-brain neural dynamics from WBM (r=0.86), compared to the FC from EEG source localization (r=0.48). Together, we demonstrate the capability and flexibility of WBM framework to uncover the whole-brain spatiotemporal neural activity and its potential to provide new insights into the input-response mechanism of the brain. © IFIP International Federation for Information Processing 2024. |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
收录类别 | |
资助项目 | This work was funded in part by the National Key R&D Program of China (2021YFF1200804), UQ-Research Training Program (UQ-RTP) Scholarship, National Natural Science Foundation of China (62001205), Shenzhen Science and Technology Innovation Committee (2022410129, KCXFZ2020122117340001).
|
EI入藏号 | 20241715951374
|
EI主题词 | Dynamics
; Electrophysiology
; Neurons
|
EI分类号 | Biomedical Engineering:461.1
; Biology:461.9
|
来源库 | EV Compendex
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/794569 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology, Shenzhen, China 2.The University of Queensland, Brisbane, Australia |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Lou, Kexin,Li, Jingzhe,Barth, Markus,et al. A Data-Driven Framework for Whole-Brain Network Modeling with Simultaneous EEG-SEEG Data[C]:Springer Science and Business Media Deutschland GmbH,2024:329-342.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论