中文版 | English
题名

Towards a Flexible Accuracy-Oriented Deep Learning Module Inference Latency Prediction Framework for Adaptive Optimization Algorithms

作者
通讯作者Theodoropoulos, Georgios
DOI
发表日期
2024
会议名称
13th IFIP TC 12 International Conference on Intelligent Information Processing, IIP 2024
ISSN
1868-4238
EISSN
1868-422X
ISBN
9783031578076
会议录名称
卷号
703 IFIPAICT
页码
34-47
会议日期
May 3, 2024 - May 6, 2024
会议地点
Shenzhen, China
出版者
摘要
With the rapid development of Deep Learning, more and more applications on the cloud and edge tend to utilize large DNN (Deep Neural Network) models for improved task execution efficiency as well as decision-making quality. Due to memory constraints, models are commonly optimized using compression, pruning, and partitioning algorithms to become deployable onto resource-constrained devices. As the conditions in the computational platform change dynamically, the deployed optimization algorithms should accordingly adapt their solutions. To perform frequent evaluations of these solutions in a timely fashion, RMs (Regression Models) are commonly trained to predict the relevant solution quality metrics, such as the resulted DNN module inference latency, which is the focus of this paper. Existing prediction frameworks specify different RM training workflows, but none of them allow flexible configurations of the input parameters (e.g., batch size, device utilization rate) and of the selected RMs for different modules. In this paper, a deep learning module inference latency prediction framework is proposed, which i) hosts a set of customizable input parameters to train multiple different RMs per DNN module (e.g., convolutional layer) with self-generated datasets, and ii) automatically selects a set of trained RMs leading to the highest possible overall prediction accuracy, while keeping the prediction time/space consumption as low as possible. Furthermore, a new RM, namely MEDN (Multi-task Encoder-Decoder Network), is proposed as an alternative solution. Comprehensive experiment results show that MEDN is fast and lightweight, and capable of achieving the highest overall prediction accuracy and R-squared value. The Time/Space-efficient Auto-selection algorithm also manages to improve the overall accuracy by 2.5% and R-squared by 0.39%, compared to the MEDN single-selection scheme.
© IFIP International Federation for Information Processing 2024.
学校署名
第一 ; 通讯
语种
英语
收录类别
资助项目
This research was supported by: Shenzhen Science and Technology Program, China (No. GJHZ20210705141807022); Guangdong Province Innovative and Entrepreneurial Team Programme, China (No. 2017ZT07X386); SUSTech Research Institute for Trustworthy Autonomous Systems, China. Corresponding author_ Georgios Theodoropoulos.
EI入藏号
20241715951353
EI主题词
Constrained optimization ; Decision making ; Forecasting ; Inference engines ; Learning algorithms ; Learning systems ; Neural network models ; Regression analysis
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Artificial Intelligence:723.4 ; Expert Systems:723.4.1 ; Machine Learning:723.4.2 ; Management:912.2 ; Mathematical Statistics:922.2 ; Systems Science:961
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794570
专题工学院_计算机科学与工程系
南方科技大学
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
2.Department of Informatics and Telecommunications, University of Thessaly, Lamia, Greece
3.Research Institute for Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Shen, Jingran,Tziritas, Nikos,Theodoropoulos, Georgios. Towards a Flexible Accuracy-Oriented Deep Learning Module Inference Latency Prediction Framework for Adaptive Optimization Algorithms[C]:Springer Science and Business Media Deutschland GmbH,2024:34-47.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shen, Jingran]的文章
[Tziritas, Nikos]的文章
[Theodoropoulos, Georgios]的文章
百度学术
百度学术中相似的文章
[Shen, Jingran]的文章
[Tziritas, Nikos]的文章
[Theodoropoulos, Georgios]的文章
必应学术
必应学术中相似的文章
[Shen, Jingran]的文章
[Tziritas, Nikos]的文章
[Theodoropoulos, Georgios]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。