题名 | A Sample Reuse Strategy for Dynamic Influence Maximization Problem |
作者 | |
通讯作者 | Tang, Ke |
DOI | |
发表日期 | 2024
|
会议名称 | 18th International Conference on Bio-Inspired Computing: Theories and Applications, BIC-TA 2023
|
ISSN | 1865-0929
|
EISSN | 1865-0937
|
ISBN | 9789819722747
|
会议录名称 | |
卷号 | 2062 CCIS
|
页码 | 107-120
|
会议日期 | December 15, 2023 - December 17, 2023
|
会议地点 | Changsha, China
|
出版地 | 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE
|
出版者 | |
摘要 | Dynamic influence maximization problem (DIMP) aims to maintain a group of influential users within an evolving social network to maximize the influence scope at any given moment. A primary category of DIMP algorithms focuses on updating reverse reachable (RR) sets designed for static social network scenarios to accelerate the estimation of influence spread. The generation time of RR sets plays a crucial role in algorithm efficiency. However, their update approaches require sequential updates for each edge change, leading to considerable computational costs. In this paper, we propose a strategy for batch updating the changes in network edge weights to maintain RR sets efficiently. We retain those with a high probability by calculating the probability that previous RR sets can be regenerated at the current moment. This method can effectively avoid the computational cost of updating and sampling these RR sets. Besides, we propose a resampling strategy that generates high-probability RR sets to make the final distribution of RR sets approximate to the sampling probability distribution under the current social network. The experimental results indicate that our strategy is both scalable and efficient. On the one hand, compared to the previous update strategies, the running time of our approach is insensitive to the number of changes in network weight; on the other hand, for various RR set-based algorithms, our strategy can reduce the running time while maintaining the solution quality that is essentially consistent with the static algorithms. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Mathematical & Computational Biology
|
WOS类目 | Computer Science, Interdisciplinary Applications
; Mathematical & Computational Biology
|
WOS记录号 | WOS:001282230100009
|
EI入藏号 | 20241916039805
|
EI主题词 | Social networking (online)
|
EI分类号 | Computer Software, Data Handling and Applications:723
; Probability Theory:922.1
|
来源库 | EV Compendex
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/794577 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology, Shenzhen; 518055, China 2.Centre for Frontier AI Research (CFAR), Agency for Science, Technology and Research (A*STAR), Singapore; 138632, Singapore |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhang, Shaofeng,Liu, Shengcai,Tang, Ke. A Sample Reuse Strategy for Dynamic Influence Maximization Problem[C]. 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE:Springer Science and Business Media Deutschland GmbH,2024:107-120.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论