中文版 | English
题名

A Sample Reuse Strategy for Dynamic Influence Maximization Problem

作者
通讯作者Tang, Ke
DOI
发表日期
2024
会议名称
18th International Conference on Bio-Inspired Computing: Theories and Applications, BIC-TA 2023
ISSN
1865-0929
EISSN
1865-0937
ISBN
9789819722747
会议录名称
卷号
2062 CCIS
页码
107-120
会议日期
December 15, 2023 - December 17, 2023
会议地点
Changsha, China
出版地
152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE
出版者
摘要
Dynamic influence maximization problem (DIMP) aims to maintain a group of influential users within an evolving social network to maximize the influence scope at any given moment. A primary category of DIMP algorithms focuses on updating reverse reachable (RR) sets designed for static social network scenarios to accelerate the estimation of influence spread. The generation time of RR sets plays a crucial role in algorithm efficiency. However, their update approaches require sequential updates for each edge change, leading to considerable computational costs. In this paper, we propose a strategy for batch updating the changes in network edge weights to maintain RR sets efficiently. We retain those with a high probability by calculating the probability that previous RR sets can be regenerated at the current moment. This method can effectively avoid the computational cost of updating and sampling these RR sets. Besides, we propose a resampling strategy that generates high-probability RR sets to make the final distribution of RR sets approximate to the sampling probability distribution under the current social network. The experimental results indicate that our strategy is both scalable and efficient. On the one hand, compared to the previous update strategies, the running time of our approach is insensitive to the number of changes in network weight; on the other hand, for various RR set-based algorithms, our strategy can reduce the running time while maintaining the solution quality that is essentially consistent with the static algorithms.
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
WOS研究方向
Computer Science ; Mathematical & Computational Biology
WOS类目
Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology
WOS记录号
WOS:001282230100009
EI入藏号
20241916039805
EI主题词
Social networking (online)
EI分类号
Computer Software, Data Handling and Applications:723 ; Probability Theory:922.1
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/794577
专题南方科技大学
作者单位
1.Southern University of Science and Technology, Shenzhen; 518055, China
2.Centre for Frontier AI Research (CFAR), Agency for Science, Technology and Research (A*STAR), Singapore; 138632, Singapore
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zhang, Shaofeng,Liu, Shengcai,Tang, Ke. A Sample Reuse Strategy for Dynamic Influence Maximization Problem[C]. 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE:Springer Science and Business Media Deutschland GmbH,2024:107-120.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Shaofeng]的文章
[Liu, Shengcai]的文章
[Tang, Ke]的文章
百度学术
百度学术中相似的文章
[Zhang, Shaofeng]的文章
[Liu, Shengcai]的文章
[Tang, Ke]的文章
必应学术
必应学术中相似的文章
[Zhang, Shaofeng]的文章
[Liu, Shengcai]的文章
[Tang, Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。