题名 | Urban Waterlogging Prediction Based on Feature Extraction and Transfer |
作者 | |
通讯作者 | Zhang, Zongjia |
DOI | |
发表日期 | 2024
|
会议名称 | 2nd International Conference on Frontiers of Energy and Environmental Engineering, CFEEE 2023
|
ISSN | 1863-5520
|
EISSN | 1863-5539
|
ISBN | 9789819703715
|
会议录名称 | |
卷号 | 10
|
页码 | 315-325
|
会议日期 | September 1, 2023 - September 3, 2023
|
会议地点 | Sanya, China
|
出版者 | |
摘要 | In waterlogging prediction, all or part of the real-time waterlogging data may be missing due to sensor failure, too sparse sampling interval setting, or sensor sensitivity problems, resulting in the failure of waterlogging prediction. In this study, we propose an urban waterlogging depth prediction method based on the transfer of waterlogging point feature extraction. The method quantifies the relationship between rainfall and waterlogging depth by extracting and constructing rainfall features at waterlogging points. Using only current or future rainfall data as model input to achieve future waterlogging depth prediction, it can effectively overcome the limitations of sparse distribution of monitoring stations and insufficient current real-time waterlogging data and can achieve more accurate medium-term waterlogging prediction and transfer prediction of water level at potential waterlogging-prone points. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. |
学校署名 | 通讯
|
语种 | 英语
|
收录类别 | |
EI入藏号 | 20243016747765
|
EI主题词 | Extraction
; Feature extraction
; Rain
; Water levels
|
EI分类号 | Precipitation:443.3
; Chemical Operations:802.3
|
来源库 | EV Compendex
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/794613 |
专题 | 理学院_统计与数据科学系 南方科技大学 |
作者单位 | 1.School of Public Management/Emergency Management, Jinan University, GD 20, Guangzhou, China 2.Department of Biostatistics, Epidemiology and Informatics Perelman School of Medicine, University of Pennsylvania, Philadelphia; PA; 19104-6021, United States 3.Department of Statistics and Data Science, Southern University of Science and Technology, GD 755, Shenzhen, China 4.Shenzhen Technology Institute of Urban Public Safety, and Key Laboratory of Urban Safety Risk Monitoring and Early Warning, Ministry of Emergency Management, GD 755, Shenzhen, China |
第一作者单位 | 统计与数据科学系 |
通讯作者单位 | 统计与数据科学系 |
推荐引用方式 GB/T 7714 |
Zhang, Zongjia,Jian, Xinyao,Chen, Yiye,et al. Urban Waterlogging Prediction Based on Feature Extraction and Transfer[C]:Springer Science and Business Media Deutschland GmbH,2024:315-325.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论