题名 | Boosting Efficiency of Perovskite Light-emitting Diodes Through Compositional Engineering |
姓名 | |
姓名拼音 | YU Xuanchi
|
学号 | 11853005
|
学位类型 | 博士
|
学位专业 | 应用物理与材料工程
|
导师 | |
导师单位 | 电子与电气工程系
|
外机构导师 | 邢贵川
|
外机构导师单位 | 澳门大学
|
论文答辩日期 | 2024-08-05
|
论文提交日期 | 2024-08-14
|
学位授予单位 | 澳门大学
|
学位授予地点 | 澳门
|
摘要 | The Ruddlesden-Popper (RP) perovskites are recognized as the most promising candidate for industrialized optoelectronic applications, due to their higher stability and lower defect density compared with the three-dimensional counterparts. Doping with various ions constitutes a strategic approach to tailor the characteristics of perovskite materials. Alkali and alkaline earth metal ions, with their unique sizes and charges, possess the capability to modify the lattice parameters, bandgap, and defect states of perovskites, thereby resulting in enhanced material performance. This thesis primarily focuses on investigating the impact of different alkali metal ions, specifically cesium (Cs) and potassium (K), on the optoelectronic properties of RP perovskite. The initial investigation confirmed that the appropriate incorporation of cesium ions (Cs+) can partially replace the formamidinium (FA+) ions in the n = 3 RP perovskite, PEA2(FAPbBr3)2PbBr4. This substitution improves the lattice stability and alters the phase distribution, thereby enhancing the performance of PeLED devices. Subsequently, we extended this to explore the effects of smaller alkali metal ions, specifically potassium ions (K+), and determine whether they exhibit similarities or differences compared to Cs+. We discovered that the addition of potassium ions can passivate defects in the perovskite, leading to an improvement in the surface morphology of the thin films and an increase in the external quantum efficiency (EQE) of PeLEDs to 7.7%. Given the intrinsic limitations of the baseline device efficiency, we opted to modify the RP perovskite structure from n = 3 to n = 5, resulting in a significant enhancement of the baseline device efficiency to 13.60%. At this stage, doping with KBr can alter the local electric field distribution of the perovskite material, shield charged defects, and suppress carrier trapping. This synergistic strategy of dielectric shielding and defect passivation leads to a remarkable increase in the photoluminescence quantum yield (PLQY) of the perovskite thin films from 66% to 95% and elevates the EQE to approximately 21%. In conclusion, the comprehensive investigation into the utilization of alkali metal ions in quasi-two-dimensional RP perovskites provides an inspiring foundation for enhancing the performance of optoelectronic devices in future developments. |
关键词 | |
语种 | 英语
|
培养类别 | 联合培养
|
入学年份 | 2018
|
学位授予年份 | 2024-09
|
参考文献列表 | 1. Chen, Z. et al. Roadmap on perovskite light-emitting diodes. J. Phys. Photonics 6, 032501 (2024).2. Green, M. A. et al. The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).3. Noh, J. H. et al. Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Lett. 13, 1764–1769 (2013).4. Stoumpos, C. C. et al. M. G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 52, 9019–9038 (2013).5. Veldhuis, S. A. et al. Perovskite Materials for Light-Emitting Diodes and Lasers. Adv. Mater. 28, 6804–6834 (2016).6. Quan, L. N. et al. Perovskites for Light Emission. Adv. Mater. 30, 1–19 (2018).7. Filip, M. R. et al. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 5, 5757 (2014).8. Mosconi, E. et al. First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. J. Phys. Chem. C 117, 13902–13913 (2013).9. Song, J. et al. Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Adv. Mater. 27, 7162–7167 (2015).10. Zhang, X. et al. All-Inorganic Perovskite Nanocrystals for High-Efficiency Light Emitting Diodes: Dual-Phase CsPbBr3-CsPb2Br5 Composites. Adv. Funct. Mater. 26, 4595–4600 (2016).11. Sun, C. et al. Efficient and Stable White LEDs with Silica-Coated Inorganic Perovskite Quantum Dots. Adv. Mater. 28, 10088–10094 (2016).12. Li, J. et al. 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control. Adv. Mater. 29, 1603885 (2017).13. Chin, X. Y. et al. Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade. Energy Environ. Sci. 11, 1770–1778 (2018).14. Protesescu, L. et al. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 15, 3692–3696 (2015).15. Cho, H. et al. Improving the Stability of Metal Halide Perovskite Materials and Light-Emitting Diodes. Adv. Mater. 30, 1–24 (2018).16. Deschler, F. et al. High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).17. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).18. Liu, J. et al. Observation of Internal Photoinduced Electron and Hole Separation in Hybrid Two-Dimentional Perovskite Films. J. Am. Chem. Soc. 139, 1432–1435 (2017).19. Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016).20. Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 11, 108–115 (2017).21. Si, J. et al. Efficient and High-Color-Purity Light-Emitting Diodes Based on In Situ Grown Films of CsPbX3 (X = Br, I) Nanoplates with Controlled Thicknesses. ACS Nano 11, 11100–11107 (2017).22. Yang, X. et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9, 2–9 (2018).23. Smith, I. C. et al. A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. Angew. Chem. Int. Ed. 53, 11232–11235 (2014).24. Cao, D. H. et al. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. J. Am. Chem. Soc. 137, 7843–7850 (2015).25. Ruddlesden, S. N. & Popper, P. New compounds of the K2NIF4 type. Acta Crystallogr. 10, 538–539 (1957).26. Ruddlesden, S. N. & Popper, P. The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 11, 54–55 (1958).27. Chen, Y. et al. 2D Ruddlesden–Popper Perovskites for Optoelectronics. Adv. Mater. 30, 1–15 (2018).28. Hong, X. et al. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B 45, 6961–6964 (1992).29. Smith, I. C. et al. A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. Angew. Chem. Int. Ed. 53, 11232–11235 (2014).30. Kumawat, N. K. et al. Recent Advances in Metal Halide-Based Perovskite Light-Emitting Diodes. Energy Technol. 5, 1734–1749 (2017).31. Guo, Z. & Zhou, H. Research Progress of Composition and Structure Design in Perovskites for High Performance Light-emitting Diodes. Acta Chim. Sin. 79, 223 (2021).32. Herz, L. M. Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites. Annu. Rev. Phys. Chem. 67, 65–89 (2016).33. Adjokatse, S. et al. Broadly tunable metal halide perovskites for solid-state light-emission applications. Mater. Today 20, 413–424 (2017).34. Kovalenko, M. V. et al. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).35. Yan, F. & Demir, H. V. LEDs using halide perovskite nanocrystal emitters. Nanoscale 11, 11402–11412 (2019).36. Kandjani, S. A. et al. A. Inorganic–Organic Perovskite Solar Cells. in Solar Cells (ed. Kosyachenko, L. A.) (IntechOpen, Rijeka, 2015). doi:10.5772/58970.37. Aydin, E. et al. Defect and Contact Passivation for Perovskite Solar Cells. Adv. Mater. 31, 1900428 (2019).38. Liu, X.-K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).39. Vasilopoulou, M. et al. Molecular materials as interfacial layers and additives in perovskite solar cells. Chem. Soc. Rev. 49, 4496–4526 (2020).40. Fang, Z. et al. Dual Passivation of Perovskite Defects for Light-Emitting Diodes with External Quantum Efficiency Exceeding 20%. Adv. Funct. Mater. 30, 1909754 (2020).41. Xu, L. et al. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 11, 3902 (2020).42. Zou, Y. et al. Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability. Mater. Today Nano 5, 100028 (2019).43. Li, Z. et al. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chem. Mater. 28, 284–292 (2016).44. Zhang, X. et al. Hybrid Perovskite Light-Emitting Diodes Based on Perovskite Nanocrystals with Organic–Inorganic Mixed Cations. Adv. Mater. 29, 1606405 (2017).45. Yu, J. C. et al. Improving the Stability and Performance of Perovskite Light-Emitting Diodes by Thermal Annealing Treatment. Adv. Mater. 28, 6906–6913 (2016).46. Wu, C. et al. Improved Performance and Stability of All-Inorganic Perovskite Light-Emitting Diodes by Antisolvent Vapor Treatment. Adv. Funct. Mater. 27, 1700338 (2017).47. Zou, Y. et al. Boosting Perovskite Light-Emitting Diode Performance via Tailoring Interfacial Contact. ACS Appl. Mater. Interfaces 10, 24320–24326 (2018).48. Filip, M. R. et al. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 5, 5757 (2014).49. Han, Q. et al. Single Crystal Formamidinium Lead Iodide (FAPbI3): Insight into the Structural, Optical, and Electrical Properties. Adv. Mater. 28, 2253–2258 (2016).50. Cao, J. et al. Interstitial Occupancy by Extrinsic Alkali Cations in Perovskites and Its Impact on Ion Migration. Adv. Mater. 30, 1707350 (2018).51. Son, D.-Y. et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 1, 1–8 (2016).52. Li, N. et al. Stabilizing Perovskite Light-Emitting Diodes by Incorporation of Binary Alkali Cations. Adv. Mater. 32, 1907786 (2020).53. van der Stam, W. et al. Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3 Perovskite Nanocrystals through Cation Exchange. J. Am. Chem. Soc. 139, 4087–4097 (2017).54. Mondal, N. et al. Achieving Near-Unity Photoluminescence Efficiency for Blue-Violet-Emitting Perovskite Nanocrystals. ACS Energy Lett. 4, 32–39 (2019).55. Yong, Z.-J. et al. Doping-Enhanced Short-Range Order of Perovskite Nanocrystals for Near-Unity Violet Luminescence Quantum Yield. J. Am. Chem. Soc. 140, 9942–9951 (2018).56. Xiang, W. et al. Ba-induced phase segregation and band gap reduction in mixed-halide inorganic perovskite solar cells. Nat. Commun. 10, 4686 (2019).57. Liu, W. et al. Mn2+-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content. J. Am. Chem. Soc. 138, 14954–14961 (2016).58. Li, J. et al. Strontium Ion B-Site Substitution for Spectral-Stable Blue Emitting Perovskite Light-Emitting Diodes. Adv. Opt. Mater. 8, 2001073 (2020).59. Kausar, A. et al. Advent of alkali metal doping: a roadmap for the evolution of perovskite solar cells. Chem. Soc. Rev. 50, 2696–2736 (2021).60. Rehman, W. et al. Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties. Energy Environ. Sci. 10, 361–369 (2017).61. Li, N. et al. Enhanced Moisture Stability of Cesium-Containing Compositional Perovskites by a Feasible Interfacial Engineering. Adv. Mater. Interfaces 4, 1700598 (2017).62. Son, D.-Y. et al. Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering. J. Am. Chem. Soc. 140, 1358–1364 (2018).63. Wu, T. et al. High-Performance Perovskite Light-Emitting Diode with Enhanced Operational Stability Using Lithium Halide Passivation. Angew. Chem. Int. Ed. 59, 4099–4105 (2020).64. Chen, H. et al. Sodium Ion Modifying in Situ Fabricated CsPbBr3 Nanoparticles for Efficient Perovskite Light Emitting Diodes. Adv. Opt. Mater. 7, 1900747 (2019).65. Pang, P. et al. Rearranging Low-Dimensional Phase Distribution of Quasi-2D Perovskites for Efficient Sky-Blue Perovskite Light-Emitting Diodes. ACS Nano 14, 11420–11430 (2020).66. Cai, W. et al. Unravelling Alkali-Metal-Assisted Domain Distribution of Quasi-2D Perovskites for Cascade Energy Transfer toward Efficient Blue Light-Emitting Diodes. Adv. Sci. 9, 2200393 (2022).67. Wu, C. et al. Alternative Type Two-Dimensional–Three-Dimensional Lead Halide Perovskite with Inorganic Sodium Ions as a Spacer for High-Performance Light-Emitting Diodes. ACS Nano 13, 1645–1654 (2019).68. Yang, F. et al. Efficient and Spectrally Stable Blue Perovskite Light-Emitting Diodes Based on Potassium Passivated Nanocrystals. Adv. Funct. Mater. 30, 1908760 (2020).69. Hoang, M. T. et al. Potassium Doping to Enhance Green Photoemission of Light-Emitting Diodes Based on CsPbBr3 Perovskite Nanocrystals. Adv. Opt. Mater. 8, 2000742 (2020).70. Yang, J.-N. et al. Potassium Bromide Surface Passivation on CsPbI3-xBrx Nanocrystals for Efficient and Stable Pure Red Perovskite Light-Emitting Diodes. J. Am. Chem. Soc. 142, 2956–2967 (2020).71. Guo, Z. et al. Promoting Energy Transfer via Manipulation of Crystallization Kinetics of Quasi-2D Perovskites for Efficient Green Light-Emitting Diodes. Adv. Mater. 33, 2102246 (2021).72. Zhang, L. et al. Suppressing Ion Migration Enables Stable Perovskite Light-Emitting Diodes with All-Inorganic Strategy. Adv. Funct. Mater. 30, 2001834 (2020).73. Yang, Y. et al. Highly Efficient Pure-Blue Light-Emitting Diodes Based on Rubidium and Chlorine Alloyed Metal Halide Perovskite. Adv. Mater. 33, 2100783 (2021).74. Wang, H. et al. Bright and Color-Stable Blue-Light-Emitting Diodes based on Three-Dimensional Perovskite Polycrystalline Films via Morphology and Interface Engineering. J. Phys. Chem. Lett. 11, 1411–1418 (2020).75. Shi, Y. et al. Rubidium Doping for Enhanced Performance of Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes. ACS Appl Mater Interfaces 9 (2018).76. Yang, G. et al. Improved current efficiency of quasi-2D multi-cation perovskite light-emitting diodes: the effect of Cs and K. Nanoscale 12, 1571–1579 (2020).77. Wei, Z. et al. Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes. Nanoscale 8, 18021–18026 (2016).78. Xu, B. et al. Bright and efficient light-emitting diodes based on MA/Cs double cation perovskite nanocrystals. J. Mater. Chem. C 5, 6123–6128 (2017).79. Tang, Z. et al. Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite. Sci. Rep. 7, 12183 (2017).80. Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).81. Kuai, L. et al. Passivating Crystal Boundaries with Potassium‐Rich Phase in Organic Halide Perovskite. Sol. RRL 3, 1900053 (2019).82. Kuai, L. et al. Revealing Crystallization Dynamics and the Compositional Control Mechanism of 2D Perovskite Film Growth by In Situ Synchrotron-Based GIXRD. ACS Energy Lett. 5, 8–16 (2020).83. Graetzel, M. et al. Materials interface engineering for solution-processed photovoltaics. Nature 488, 304–312 (2012).84. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).85. Kojima, A. et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).86. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).87. Wei, Q. et al. Recent Progress in Metal Halide Perovskite Micro- and Nanolasers. Adv. Opt. Mater. 7, 1900080 (2019).88. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 5 (2014).89. Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).90. Veldhuis, S. A. et al. Perovskite Materials for Light-Emitting Diodes and Lasers. Adv. Mater. 28, 6804–6834 (2016).91. Li, Z. et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat. Commun. 10, 1027 (2019).92. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).93. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).94. Zhao, X. & Tan, Z.-K. Large-area near-infrared perovskite light-emitting diodes. Nat. Photonics 14, 215–218 (2020).95. Wang, Q. et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat. Commun. 10, 5633 (2019).96. Stranks, S. D. et al. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 342, 341–344 (2013).97. Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 342, 344–347 (2013).98. Xing, G. et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8, 1–9 (2017).99. Song, J. et al. Organic–Inorganic Hybrid Passivation Enables Perovskite QLEDs with an EQE of 16.48%. Adv. Mater. 30, 1805409 (2018).100. Yan, F. et al. Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes. Nano Lett. 18, 3157–3164 (2018).101. Han, D. et al. Efficient Light-Emitting Diodes Based on in Situ Fabricated FAPbBr3 Nanocrystals: The Enhancing Role of the Ligand-Assisted Reprecipitation Process. ACS Nano 12, 8808–8816 (2018).102. Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016).103. Liang, C. et al. Ruddlesden–Popper Perovskite for Stable Solar Cells. ENERGY Environ. Mater. 1, 221–231 (2018).104. Pang, S. et al. NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells. Chem. Mater. 26, 1485–1491 (2014).105. Yang, X. et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9, 570 (2018).106. Tu, Y. et al. Mixed-cation perovskite solar cells in space. Sci. China Phys. Mech. Astron. 62, 1–4 (2019).107. Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).108. Liu, T. et al. High-Performance Formamidinium-Based Perovskite Solar Cells via Microstructure-Mediated δ-to-α Phase Transformation. Chem. Mater. 29, 3246–3250 (2017).109. Wang, Z. et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 1–10 (2017).110. Xiao, M. et al. A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells. Angew. Chem. 126, 10056–10061 (2014).111. Shang, Y. et al. Quasi‐2D Inorganic CsPbBr3 Perovskite for Efficient and Stable Light‐Emitting Diodes. Adv. Funct. Mater. 28, 1801193 (2018).112. Xing, J. et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 9, 3541 (2018).113. Quan, L. N. et al. Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission. Nano Lett. 17, 3701–3709 (2017).114. Zhang, X. et al. Iodine interstitials as a cause of nonradiative recombination in hybrid perovskites. Phys. Rev. B 101, 140101 (2020).115. Zhang, X. et al. C. G. Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites. Nat. Mater. 20, 971–976 (2021).116. Zhang, X. et al. All-inorganic halide perovskites as candidates for efficient solar cells. Cell Rep. Phys. Sci. 2, (2021).117. Swift, M. W. & Lyons, J. L. Deep levels in cesium lead bromide from native defects and hydrogen. J. Mater. Chem. A 9, 7491–7495 (2021).118. Zhang X. et al. Defect tolerance in halide perovskites: A first-principles perspective. J. Appl. Phys. 131, (2022).119. Kang, J. & Wang, L.-W. High Defect Tolerance in Lead Halide Perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489–493 (2017).120. Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).121. Wang, K. et al. Lead-Free Organic–Perovskite Hybrid Quantum Wells for Highly Stable Light-Emitting Diodes. ACS Nano 15, 6316–6325 (2021).122. Chen, Y. et al. 2D Ruddlesden–Popper Perovskites for Optoelectronics. Adv. Mater. 30, 1703487 (2018).123. Cui, S. et al. Rubidium Ions Enhanced Crystallinity for Ruddlesden–Popper Perovskites. Adv. Sci. 7, 2002445 (2020).124. Liang, Y. et al. Lasing from Mechanically Exfoliated 2D Homologous Ruddlesden–Popper Perovskite Engineered by Inorganic Layer Thickness. Adv Mater 8 (2019).125. Guo, J. et al. Phase Tailoring of Ruddlesden–Popper Perovskite at Fixed Large Spacer Cation Ratio. 10 (2021).126. Cao, D. H. et al. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. J. Am. Chem. Soc. 137, 7843–7850 (2015).127. Wang, H. et al. Recent progress of the optoelectronic properties of 2D Ruddlesden-Popper perovskites. J. Semicond. 40, 041901 (2019).128. Yin, W.-J. et al. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).129. Du, M.-H. Density Functional Calculations of Native Defects in CH3NH3PbI3: Effects of Spin–Orbit Coupling and Self-Interaction Error. J. Phys. Chem. Lett. 6, 1461–1466 (2015).130. Liu, N. & Yam, C. First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Phys. Chem. Chem. Phys. 20, 6800–6804 (2018).131. Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 1–13 (2016).132. Su, R. et al. Dielectric screening in perovskite photovoltaics. Nat. Commun. 12, 2479 (2021).133. Zheng, F. et al. Triggering the Passivation Effect of Potassium Doping in Mixed‐Cation Mixed‐Halide Perovskite by Light Illumination. Adv. Energy Mater. 9, 1901016 (2019).134. Du, M. H. Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2, 9091–9098 (2014).135. Xiao, X. et al. Capacitance–voltage characteristics of perovskite light-emitting diodes: Modeling and implementing on the analysis of carrier behaviors. Appl. Phys. Lett. 120, 243501 (2022).136. Sun, J. et al. Ionic Liquid Passivation for High-Performance Sky-Blue Quasi-2D Perovskite Light-Emitting Diodes. Adv. Opt. Mater. 11, 2202721 (2023). |
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/799266 |
专题 | 工学院_电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Yu XC. Boosting Efficiency of Perovskite Light-emitting Diodes Through Compositional Engineering[D]. 澳门. 澳门大学,2024.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11853005-喻萱池-电子与电气工程(7182KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[喻萱池]的文章 |
百度学术 |
百度学术中相似的文章 |
[喻萱池]的文章 |
必应学术 |
必应学术中相似的文章 |
[喻萱池]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论