题名 | DIR-BHRNet: A Lightweight Network for Real-Time Vision-Based Multiperson Pose Estimation on Smartphones |
作者 | |
通讯作者 | Hao, Qi |
发表日期 | 2024-07-01
|
DOI | |
发表期刊 | |
ISSN | 1551-3203
|
EISSN | 1941-0050
|
摘要 | Human pose estimation (HPE), particularly multiperson pose estimation (MPPE), has been applied in many domains, such as human-machine systems. However, the current MPPE methods generally run on powerful GPU systems and take a lot of computational costs. Real-time MPPE on mobile devices with low-performance computing is a challenging task. In this article, we propose a lightweight neural network, DIR-BHRNet, for real-time MPPE on smartphones. In DIR-BHRNet, we design a novel lightweight convolutional module, dense inverted residual (DIR), to improve accuracy by adding a depthwise convolution and a shortcut connection into the well-known inverted residual, and a novel efficient neural network structure, balanced HRNet (BHRNet), to reduce computational costs by reconfiguring the proper number of convolutional blocks on each branch. We evaluate DIR-BHRNet on the well-known COCO and CrowdPose datasets. The results show that DIR-BHRNet outperforms the state-of-the-art methods in terms of accuracy with a real-time computational cost. Finally, we implement the DIR-BHRNet on the current mainstream Android smartphones, which perform more than 10 FPS. The free-used executable file (Android 10), source code, and a video description of this work are publicly available on the page(1) to facilitate the development of real-time MPPE on smartphones. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[62261160654]
; Shenzhen Fundamental Research Program[JCYJ20220818103006012]
; Shenzhen Key Laboratory of Robotics and Computer Vision[ZDSYS20220330160557001]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Engineering
|
WOS类目 | Automation & Control Systems
; Computer Science, Interdisciplinary Applications
; Engineering, Industrial
|
WOS记录号 | WOS:001283801500001
|
出版者 | |
来源库 | Web of Science
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/803233 |
专题 | 工学院_计算机科学与工程系 南方科技大学 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系; 南方科技大学 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Lan, Gongjin,Wu, Yu,Hao, Qi. DIR-BHRNet: A Lightweight Network for Real-Time Vision-Based Multiperson Pose Estimation on Smartphones[J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,2024.
|
APA |
Lan, Gongjin,Wu, Yu,&Hao, Qi.(2024).DIR-BHRNet: A Lightweight Network for Real-Time Vision-Based Multiperson Pose Estimation on Smartphones.IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS.
|
MLA |
Lan, Gongjin,et al."DIR-BHRNet: A Lightweight Network for Real-Time Vision-Based Multiperson Pose Estimation on Smartphones".IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS (2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论