中文版 | English
题名

DIR-BHRNet: A Lightweight Network for Real-Time Vision-Based Multiperson Pose Estimation on Smartphones

作者
通讯作者Hao, Qi
发表日期
2024-07-01
DOI
发表期刊
ISSN
1551-3203
EISSN
1941-0050
摘要
Human pose estimation (HPE), particularly multiperson pose estimation (MPPE), has been applied in many domains, such as human-machine systems. However, the current MPPE methods generally run on powerful GPU systems and take a lot of computational costs. Real-time MPPE on mobile devices with low-performance computing is a challenging task. In this article, we propose a lightweight neural network, DIR-BHRNet, for real-time MPPE on smartphones. In DIR-BHRNet, we design a novel lightweight convolutional module, dense inverted residual (DIR), to improve accuracy by adding a depthwise convolution and a shortcut connection into the well-known inverted residual, and a novel efficient neural network structure, balanced HRNet (BHRNet), to reduce computational costs by reconfiguring the proper number of convolutional blocks on each branch. We evaluate DIR-BHRNet on the well-known COCO and CrowdPose datasets. The results show that DIR-BHRNet outperforms the state-of-the-art methods in terms of accuracy with a real-time computational cost. Finally, we implement the DIR-BHRNet on the current mainstream Android smartphones, which perform more than 10 FPS. The free-used executable file (Android 10), source code, and a video description of this work are publicly available on the page(1) to facilitate the development of real-time MPPE on smartphones.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[62261160654] ; Shenzhen Fundamental Research Program[JCYJ20220818103006012] ; Shenzhen Key Laboratory of Robotics and Computer Vision[ZDSYS20220330160557001]
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering
WOS类目
Automation & Control Systems ; Computer Science, Interdisciplinary Applications ; Engineering, Industrial
WOS记录号
WOS:001283801500001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803233
专题工学院_计算机科学与工程系
南方科技大学
作者单位
1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系;  南方科技大学
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Lan, Gongjin,Wu, Yu,Hao, Qi. DIR-BHRNet: A Lightweight Network for Real-Time Vision-Based Multiperson Pose Estimation on Smartphones[J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,2024.
APA
Lan, Gongjin,Wu, Yu,&Hao, Qi.(2024).DIR-BHRNet: A Lightweight Network for Real-Time Vision-Based Multiperson Pose Estimation on Smartphones.IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS.
MLA
Lan, Gongjin,et al."DIR-BHRNet: A Lightweight Network for Real-Time Vision-Based Multiperson Pose Estimation on Smartphones".IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lan, Gongjin]的文章
[Wu, Yu]的文章
[Hao, Qi]的文章
百度学术
百度学术中相似的文章
[Lan, Gongjin]的文章
[Wu, Yu]的文章
[Hao, Qi]的文章
必应学术
必应学术中相似的文章
[Lan, Gongjin]的文章
[Wu, Yu]的文章
[Hao, Qi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。