中文版 | English
题名

Edge Learning via Message Passing: Distributed Estimation Framework Based on Gaussian Mixture Model

作者
发表日期
2024
DOI
发表期刊
ISSN
2372-2541
卷号PP期号:99
摘要
To leverage distributed data communication and learning in sensor networks effectively, edge learning (EL) methods have garnered significant attention. In the realm of distributed sensor networks, achieving consensus estimation of interested variables stands as a pivotal challenge. To address this challenge using edge learning methods, several approaches have been proposed combining message passing (MP) algorithms. In this paper, we first describe the distributed consensus algorithm based on MP and summarize the sampling-based and parameter-based representation of the beliefs exchanged in the distributed MP algorithm. To improve the accuracy of estimation while retaining the low complexity advantage of the parametric representation method, we propose a distributed consensus framework based on the Gaussian mixture model (GMM) MP. We approximate and keep the form beliefs as GMM in the iterations. Two different simulation scenarios are performed to shed light on the proposed distributed consensus estimation framework, i.e., static target localization and dynamic target tracking. Finally, simulation results show the performance advantages of the algorithm proposed.
相关链接[IEEE记录]
收录类别
学校署名
第一
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803235
专题工学院_系统设计与智能制造学院
作者单位
1.School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
2.School of System Design and Intelligent Manufacturing and the Shenzhen Key Laboratory of Robotics and Computer Vision, Southern University of Science and Technology, Shenzhen, China
3.School of Information and Electronics, Beijing Institute of Technology, Beijing, China
第一作者单位系统设计与智能制造学院
第一作者的第一单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Xiang Li,Weijie Yuan,Kecheng Zhang,et al. Edge Learning via Message Passing: Distributed Estimation Framework Based on Gaussian Mixture Model[J]. IEEE Internet of Things Journal,2024,PP(99).
APA
Xiang Li,Weijie Yuan,Kecheng Zhang,&Nan Wu.(2024).Edge Learning via Message Passing: Distributed Estimation Framework Based on Gaussian Mixture Model.IEEE Internet of Things Journal,PP(99).
MLA
Xiang Li,et al."Edge Learning via Message Passing: Distributed Estimation Framework Based on Gaussian Mixture Model".IEEE Internet of Things Journal PP.99(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiang Li]的文章
[Weijie Yuan]的文章
[Kecheng Zhang]的文章
百度学术
百度学术中相似的文章
[Xiang Li]的文章
[Weijie Yuan]的文章
[Kecheng Zhang]的文章
必应学术
必应学术中相似的文章
[Xiang Li]的文章
[Weijie Yuan]的文章
[Kecheng Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。