中文版 | English
题名

Evolutionary Algorithms for Large‐Scale Multi‐Objective Optimization

作者
发表日期
2024
DOI
发表期刊
摘要
Summary

This chapter introduces four representative multi‐objective evolutionary algorithms (MOEAs) for solving large scale multi‐objective optimization problems (LSMOPs). The most significant feature of these MOEAs is that they suggest different ideas to handle the high‐dimensional decision spaces, such as the decision variable grouping methods in cooperative coevolution generalized differential evolution 3 (CCGDE3) and large‐scale many‐objective evolutionary algorithm. Decision variable grouping‐based MOEAs are good at solving LSMOPs with few variable interactions, decision space reduction‐based MOEAs can quickly converge to local optimums of LSMOPs with simple Pareto sets, and novel search strategy‐based MOEAs are more robust in solving complex LSMOPs. Besides, most large‐scale MOEAs are ineffective for solving small‐scale problems.

相关链接[IEEE记录]
学校署名
其他
ISBN
9781394178421
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803251
专题南方科技大学
作者单位
1.Anhui University, China
2.Southern University of Science and Technology, China
3.Westlake University, China
推荐引用方式
GB/T 7714
Xingyi Zhang,Ran Cheng,Ye Tian,et al. Evolutionary Algorithms for Large‐Scale Multi‐Objective Optimization[J]. Evolutionary Large-Scale Multi-Objective Optimization and Applications,2024.
APA
Xingyi Zhang,Ran Cheng,Ye Tian,&Yaochu Jin.(2024).Evolutionary Algorithms for Large‐Scale Multi‐Objective Optimization.Evolutionary Large-Scale Multi-Objective Optimization and Applications.
MLA
Xingyi Zhang,et al."Evolutionary Algorithms for Large‐Scale Multi‐Objective Optimization".Evolutionary Large-Scale Multi-Objective Optimization and Applications (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xingyi Zhang]的文章
[Ran Cheng]的文章
[Ye Tian]的文章
百度学术
百度学术中相似的文章
[Xingyi Zhang]的文章
[Ran Cheng]的文章
[Ye Tian]的文章
必应学术
必应学术中相似的文章
[Xingyi Zhang]的文章
[Ran Cheng]的文章
[Ye Tian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。