中文版 | English
题名

Incentivizing Efficient Label Denoising in Federated Learning

作者
发表日期
2024
DOI
发表期刊
ISSN
2372-2541
卷号PP期号:99
摘要
Federated learning (FL) is a distributed machine learning scheme that enables clients to train a shared global model without exchanging local data. In FL, the presence of label noise can severely reduce the accuracy of the global model. Although some recent works have focused on designing algorithms for label denoising, they ignored the important issue that clients may not apply costly label denoising strategies due to them being self-interested and having heterogeneous valuations on the model accuracy. To fill this gap, we model the clients’ strategic interactions as a novel label denoising game and determine the clients’ equilibrium strategies. We prove that the equilibrium outcome always leads to a lower global model accuracy than the socially optimal solution does. To motivate the clients’ efficient label denosing behaviors, we propose a penalty-based incentive mechanism and design the degree of penalty for punishing the clients’ undesired denoising behaviors, addressing the inaccurate noise rate detection in FL. We prove that our mechanism can achieve social efficiency, individual rationality, and weak budget balance. Numerical experiments on MNIST and CIFAR-10 show that as clients’ data become noisier, the gap between the equilibrium outcome and the socially optimal solution increases, verifying the necessity of an incentive mechanism. We empirically show that our proposed mechanism improves the model accuracy by up to 4.4% and incentivizes clients to achieve equilibrium strategies that are close to the socially optimal solution.
相关链接[IEEE记录]
收录类别
学校署名
第一
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803261
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.Department of Computer Science, The University of California, Davis, CA, United States
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Yizhou Yan,Xinyu Tang,Chao Huang,et al. Incentivizing Efficient Label Denoising in Federated Learning[J]. IEEE Internet of Things Journal,2024,PP(99).
APA
Yizhou Yan,Xinyu Tang,Chao Huang,&Ming Tang.(2024).Incentivizing Efficient Label Denoising in Federated Learning.IEEE Internet of Things Journal,PP(99).
MLA
Yizhou Yan,et al."Incentivizing Efficient Label Denoising in Federated Learning".IEEE Internet of Things Journal PP.99(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yizhou Yan]的文章
[Xinyu Tang]的文章
[Chao Huang]的文章
百度学术
百度学术中相似的文章
[Yizhou Yan]的文章
[Xinyu Tang]的文章
[Chao Huang]的文章
必应学术
必应学术中相似的文章
[Yizhou Yan]的文章
[Xinyu Tang]的文章
[Chao Huang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。