题名 | Symmetry-guided gradient descent for quantum neural networks |
作者 | |
通讯作者 | Meng, Fei |
发表日期 | 2024-08-05
|
DOI | |
发表期刊 | |
ISSN | 2469-9926
|
EISSN | 2469-9934
|
卷号 | 110期号:2 |
摘要 | Many supervised learning tasks have intrinsic symmetries, such as translational and rotational symmetry in image classifications. These symmetries can be exploited to enhance performance. We formulate the symmetry constraints into a concise mathematical form. We design two ways to adopt the constraints into the cost function, thereby shaping the cost landscape in favor of parameter choices, which respect the given symmetry. Unlike methods that alter the neural network circuit Ansatz to impose symmetry, our method only changes the classical postprocessing of gradient descent, which is simpler to implement. We call the method symmetry-guided gradient descent (SGGD). We illustrate SGGD in entanglement classification of Werner states and in two classification tasks in a two-dimensional feature space. In both cases, the results show that SGGD can accelerate the training, improve the generalization ability, and remove vanishing gradients, especially when the training data is biased. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
资助项目 | National Natural Science Foundation of China["12050410246","1200509","12050410245"]
; City University of Hong Kong[9610623]
|
WOS研究方向 | Optics
; Physics
|
WOS类目 | Optics
; Physics, Atomic, Molecular & Chemical
|
WOS记录号 | WOS:001285582000005
|
出版者 | |
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/803295 |
专题 | 量子科学与工程研究院 南方科技大学 理学院_物理系 |
作者单位 | 1.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China 3.City Univ Hong Kong, Dept Phys, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China 4.Huawei Technol Co Ltd, HiSilicon Res, Shenzhen 518129, Peoples R China 5.Southern Univ Sci & Technol, Inst Nanosci & Applicat, Shenzhen 518055, Peoples R China |
第一作者单位 | 量子科学与工程研究院; 物理系 |
第一作者的第一单位 | 量子科学与工程研究院 |
推荐引用方式 GB/T 7714 |
Bian, Kaiming,Zhang, Shitao,Meng, Fei,et al. Symmetry-guided gradient descent for quantum neural networks[J]. PHYSICAL REVIEW A,2024,110(2).
|
APA |
Bian, Kaiming,Zhang, Shitao,Meng, Fei,Zhang, Wen,&Dahlsten, Oscar.(2024).Symmetry-guided gradient descent for quantum neural networks.PHYSICAL REVIEW A,110(2).
|
MLA |
Bian, Kaiming,et al."Symmetry-guided gradient descent for quantum neural networks".PHYSICAL REVIEW A 110.2(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论